1,675 research outputs found
Theory of Disordered Itinerant Ferromagnets I: Metallic Phase
A comprehensive theory for electronic transport in itinerant ferromagnets is
developed. We first show that the Q-field theory used previously to describe a
disordered Fermi liquid also has a saddle-point solution that describes a
ferromagnet in a disordered Stoner approximation. We calculate transport
coefficients and thermodynamic susceptibilities by expanding about the saddle
point to Gaussian order. At this level, the theory generalizes previous
RPA-type theories by including quenched disorder. We then study soft-mode
effects in the ferromagnetic state in a one-loop approximation. In
three-dimensions, we find that the spin waves induce a square-root frequency
dependence of the conductivity, but not of the density of states, that is
qualitatively the same as the usual weak-localization effect induced by the
diffusive soft modes. In contrast to the weak-localization anomaly, this effect
persists also at nonzero temperatures. In two-dimensions, however, the spin
waves do not lead to a logarithmic frequency dependence. This explains
experimental observations in thin ferromagnetic films, and it provides a basis
for the construction of a simple effective field theory for the transition from
a ferromagnetic metal to a ferromagnetic insulator.Comment: 15pp., REVTeX, 2 eps figs, final version as publishe
Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions
A microscopic heterogeneous system under random influence is considered. The
randomness enters the system at physical boundary of small scale obstacles as
well as at the interior of the physical medium. This system is modeled by a
stochastic partial differential equation defined on a domain perforated with
small holes (obstacles or heterogeneities), together with random dynamical
boundary conditions on the boundaries of these small holes.
A homogenized macroscopic model for this microscopic heterogeneous stochastic
system is derived. This homogenized effective model is a new stochastic partial
differential equation defined on a unified domain without small holes, with
static boundary condition only. In fact, the random dynamical boundary
conditions are homogenized out, but the impact of random forces on the small
holes' boundaries is quantified as an extra stochastic term in the homogenized
stochastic partial differential equation. Moreover, the validity of the
homogenized model is justified by showing that the solutions of the microscopic
model converge to those of the effective macroscopic model in probability
distribution, as the size of small holes diminishes to zero.Comment: Communications in Mathematical Physics, to appear, 200
Fragment Production in Non-central Collisions of Intermediate Energy Heavy Ions
The defining characteristics of fragment emission resulting from the
non-central collision of 114Cd ions with 92Mo target nuclei at E/A = 50 MeV are
presented. Charge correlations and average relative velocities for mid-velocity
fragment emission exhibit significant differences when compared to standard
statistical decay. These differences associated with similar velocity
dissipation are indicative of the influence of the entrance channel dynamics on
the fragment production process
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
Evidence for the strangeness-changing weak decay
Using a collision data sample corresponding to an integrated luminosity
of 3.0~fb, collected by the LHCb detector, we present the first search
for the strangeness-changing weak decay . No
hadron decay of this type has been seen before. A signal for this decay,
corresponding to a significance of 3.2 standard deviations, is reported. The
relative rate is measured to be
, where and
are the and fragmentation
fractions, and is the branching
fraction. Assuming is bounded between 0.1 and
0.3, the branching fraction would lie
in the range from to .Comment: 7 pages, 2 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm
Mapping the stray domestic cat (Felis catus) population in New Zealand: Species distribution modelling with a climate change scenario and implications for protected areas
Species distribution models of stray cats were developed using two types of occurrence data: (i) a combined dataset of stray cats and cat colonies in Auckland and projected to the wider New Zealand area; and (ii) population density as an analogue for country-wide stray cat occurrence. These occurrence data, together with sets of environmental variables were used as input to the Maxent modelling tool to produce maps of suitability for the species. Environmental variables used in the models consist of current bioclimatic conditions, and a future climate scenario (RCP8.5 for year 2070 CCSM model). Commonly occurring bias in the modelling process due to latitude, the area for selecting background points in model evaluation, inherent spatial autocorrelation of occurrence points, and correlated bioclimatic variables were explicitly addressed. Results show that the North Island consistently provide more suitable areas for stray cats with increased suitability in a high emission climate change condition. Key protected areas at risk from the increased suitability to stray cats are also presented
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
- …
