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a b s t r a c t

Species distribution models of stray cats were developed using two types of occurrence data: (i) a
combined dataset of stray cats and cat colonies in Auckland and projected to the wider New Zealand
area; and (ii) population density as an analogue for country-wide stray cat occurrence. These occurrence
data, together with sets of environmental variables were used as input to the Maxent modelling tool to
produce maps of suitability for the species. Environmental variables used in the models consist of current
bioclimatic conditions, and a future climate scenario (RCP8.5 for year 2070 CCSM model). Commonly
occurring bias in the modelling process due to latitude, the area for selecting background points in model
evaluation, inherent spatial autocorrelation of occurrence points, and correlated bioclimatic variables
were explicitly addressed. Results show that the North Island consistently provide more suitable areas
for stray cats with increased suitability in a high emission climate change condition. Key protected areas
at risk from the increased suitability to stray cats are also presented.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The cat (Felis catus) has been identified as one of the world's
most invasive species (Duffy & Capece, 2012; Lowe, Browne,
Boudjelas, & De Poorter, 2000). Yet it is also the most common
companion animal in many countries including New Zealand
(Argante, 2008; MacKay and NZCAC, 2011) and as a consequence
populations of cats (either as pets or un-owned) are in general
associated spatially with human populations (Ferreira, Leit~ao,
Santos-Reis, & Revilla, 2011). The population densities of urban
free-living, un-owned cats (also known as ‘stray cats’; see
Farnworth, Campbell, & Adams, 2010) have been demonstrated to
be closely linked to human population density (Aguilar &
Farnworth, 2012; 2013). The management of populations of un-
owned individuals, including cat colonies (Sparkes et al., 2013)
that typically loosely aggregate around ad hoc provision of food and
shelter is considered to be challenging. Reasons for this challenge
Aguilar), mark.farnworth@
z (L. Winder).
include the emotional connection evident in those who care for un-
owned animals, perception as a public nuisance (Ash, Adams, Ash,
& Adams, 2003), predation of native fauna (Baker, Bentley, Ansell,&
Harris, 2005; Dickman, Denny, & Buckmaster, 2010; Gillies & Clout,
2003; Van Heezik, Smyth, Adams, & Gordon, 2010; Woods,
McDonald, & Harris, 2003), and potential for acting as vectors of
pathogens and diseases (Levinthal, 2010; Simking, Wongnakphet,
Stich, & Jittapalapong, 2010).

Decisions regarding the management of un-owned cat pop-
ulations must therefore take into account a wide range of per-
spectives (Jarvis, 1990) that span animal (and human) welfare
considerations, as well as environmental issues that focus on
ecology and the conservation of biodiversity (Loss, Will, & Marra,
2013; Marston & Bennett, 2009; Van Heezik et al., 2010). The
multifaceted humanecat relationship which is dominated by
emotional attachments to domestic cats or their perceived prey are
therefore considered when management strategies are developed
(Clarke & Pacin, 2002). An essential step towards developing
effective management strategies is to understand the spatial and
temporal distributions of cats: Thomas, Fellowes, and Baker (2012),
for example, demonstrated that predation of native birds by urban
domestic cats was mediated by both spatial and temporal
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processes.
Management strategies such as ‘Trap-Neuter-Return’ (TNR),

‘capture and rehoming’ and euthanasia seek to address the growth
of stray cat populations in a humane way (Farnworth, Campbell, &
Adams, 2011, 2013). Despite these measures, there is no clear evi-
dence that the management of urban cat populations has been
effective. In Melbourne, Australia Marston and Bennett (2009) have
shown that the main driver for the growth of the urban cat popu-
lation is through reproduction of un-sterilised and un-owned cats.
Within New Zealand, studies show that the sterilisation rate of
owned cats is approximately 90% (Farnworth et al., 2010; McKay,
Farnworth, & Waran, 2009), yet un-owned cat populations are
seemingly growing (Aguilar & Farnworth, 2012).

A growing un-owned cat population is of concern, particularly
with respect to their impact on native fauna (Calver, Grayson, Lilith,
& Dickman, 2011; Fitzgerald, 1990). For example, un-owned cats
that live in a wild state distant from human populations (Schmidt,
Lopez, & Collier, 2007) are considered to be responsible for at least
14% of extinctions of birds, mammals and reptiles globally in island
environments (Medina et al., 2011). Additionally, urban un-owned
cat populations may act as a source of animals that turn feral and
colonise adjacent rural or semi-urban areas that may be of high
conservation value (Ferreira et al., 2011) and protected in law (Van
Heezik et al., 2010). Pet cats tend to have a limited home range and
reduced likelihood of dispersal as their territory is centred around
food and shelter provided by the owner (Kays and DeWan, 2004),
whilst un-owned cats often experience significant pressure to
disperse (Liberg, Sandell, Pontier, & Natoli, 2000) primarily due to
food availability. In spatial terms, urban environments may there-
fore act as a source (i.e. centres of dispersal) for cat dispersal.

Spatial and temporal distribution of cat populations are
amenable to investigation using GIS and species distribution
mapping techniques. Such analyses can: (i) evaluate and assess
current un-owned cat distributions; (ii) identify natural areas that
are proximal to urban areas to evaluate colonisation risk; and (iii)
build future scenarios using climate models. Species distribution
modelling generates maps showing the suitability of areas for a
particular species and is a widely used approach, with a rapidly
growing volume of work utilising improved algorithms and soft-
ware tools. Scenarios can be modelled for species of interest over a
range of geographic and temporal scales, using a variety of envi-
ronmental, socio-economic and non-biological information layers
(Booth, Nix, Busby, & Hutchinson, 2014; Guisan et al., 2013;
Sherrouse, Semmens, & Clement, 2014). Models describing the
range or distribution of species from future climate scenarios
contribute to the growing work on the effects of climate change,
and provide information that can be used in preparing strategic or
regional management plans (Bertelsmeier, Luque, & Courchamp,
2013; Hellman et al., 2008). The need to provide attention on the
relationship between climate change, biodiversity and important
species is well-documented (Bellard, Bertelsmeier, Leadley,
Thuiller, & Courchamp, 2012; De Souza, Lorini, Alves, Cordeiro, &
Vale, 2011; Irlich et al., 2014; Thomas, Franco, & Hill, 2006; Yates
et al., 2009). Specifically, observations by Huyser, Ryan, and
Table 1
Land cover classification from based on distances from Land Cover Database of New Zea

Land class name

Urban Parkland/Open Space, Transport Infrastructure Built-up Area (settlement).
Orchard, Vineyard or Other Perennial Crop Indigenous Forest, High Producing Exotic G
Tall Tussock Grassland, Manuka and/or Kanuka, Low Producing grassland, Exotic Fores
Short-rotation Cropland, Mixed Exotic Shrubland, Gorse and/or Broom, Forest e Harve
Surface Mine or Dump, Sub Alpine Shrubland, Sand or Gravel River, Permanent Snow

Lake or Pond, Herbaceous Saline, Vegetation, Herbaceous Freshwater Vegetation, Gr
Cooper (2000) on changes in the use of habitats and population
of an endemic bird, the lesser sheathbills (Chionis minor) of the sub-
Antartic Marion Island brought about by the interactions of feral
cats, mice and observed warming over the 20 year comparison
period of the study suggests the need for further investigations on
implications of climate change.

In this study, we used species distribution modelling to describe
the current distribution of un-owned cats, and investigated the
potential impacts of climate change on future distributions.

2. Methodology

ArcGIS and Maxent v3.3.3k (Phillips, Anderson, & Schapire,
2006) were used for processing un-owned cat data available from
previous studies (Aguilar & Farnworth, 2012, 2013). Maxent has
been used to model and predict the distribution of invasive species
(De Queiroz et al., 2013; Domíguez-Vega, Monroy-Vilchis, Balderas-
Valdivia, Gienger, & Ariano-S�anchez, 2012; Elith et al., 2006), en-
dangered and threatened flora and fauna (Shochat et al., 2010),
organisms of economic significance (Blanchard, O'Farrell, &
Richardson, 2014) and ancient species (Connolly, Manning,
Colledge, Dobney, & Shennan, 2012). Based on the maximum en-
tropy algorithm that tries to determine the probability distribution
that is the most spread out or close to uniform based on constraints
dictated by available data, Maxent models the distribution of a
species over a defined area using the location of each sample and a
set of environmental variables of the area (Phillips et al., 2006). The
result is a ‘suitability map’ depicting the probability of occurrence
of the species at each raster cell of the area covered.

Maxent is widely used (Fourcade, Engler, R€odder, & Secondi,
2014) and found to provide better performance when compared
to other approaches (Elith et al., 2006). Techniques addressing
model validity and robustness such as spatial autocorrelation,
background data bias, environmental heterogeneity and latitudinal
bias were also utilised during data processing (Brown, 2014; Elith
et al., 2011; Phillips & Dudik, 2008).

We used un-owned cat data (stray and colony) sourced from
animal welfare organisations and reported in previous papers
(Aguilar & Farnworth, 2012, 2013) as the basis for running two
models. Model A was based solely from actual data modelled in
Auckland and projected to the entire country. Model B used human
population data as an analogue for un-owned cat presence data.

Model A (Auckland un-owned cat data) was run with the
highest resolution (30 arc-second) Bioclim environmental layers
downloaded from the Worldclim database (Hijmans, Cameron,
Parra, Jones, & Jarvis, 2005). Bioclim is a dataset consisting of 19
climatic variables, eleven of which are measures of temperature
and eight of precipitation. The variables represent annual trends,
seasonality and environmental parameters that limit or describe
extreme climatic conditions. These sets of variables are considered
to be more informative for modelling than simple measures such as
monthly temperature and precipitation averages. Bioclim is used
widely for species distribution modelling (Guisan & Thuiller, 2005;
Wakie, Evangelista, Jarnevich, & Laituri.M, 2014; Wasowicz,
land grouped into favourable environments for un-owned cats.

Group

5
rassland. 4
t, Deciduous Hardwoods, Broadleaved Indigenous Hardwoods. 3
sted, Flaxland, Fernland, Depleted Grassland 2
and Ice Matagouri or Grey Scrub, Mangrove, Landslide,
avel or Rock, Estuarine Open Water, Alpine Grass/Herbfield

1



Table 2
Distances reported as home ranges in previous studies.

Reported home range (Ha) Rarefy distance Location Reference

Stray cats 0.07e2.86 2.99 Perth, Australia Lilith (2007)
2.70e7.9 4.98 Canberra, Australia Barrat (1997)
0.1e10.1 5.63 Christchurch Morgan (2002)
0.5e21.8 8.27 Dunedin, NZ Van Heezik et al. (2010)

Feral cats 80e990 55.77 NW Victoria, Australia Jones & Coman (1982)
42e840 51.37 Mackenzie Basin, South Island, New Zealand Norbury et al. (1998)

178e2486 56.26 Central South Island, New Zealand Recio et al. (2010)

Table 3
AUC values for the spatially rarefied data from the initial Maxent run (highest values
are in bold).

Raster value AUC training AUC test No of pts

Model A Group 1 e 0.5 1
Group 2 0.906 0.811 3
Group 3 0.829 0.901 11
Group 4 0.838 0.605 38
Group 5 0.906 0.827 78
All Points 0.836 0.737 131
Original Points from Stray Cat Data 2953

Model B Group 1 0.697 0.602 56
Group 2 0.804 0.781 713
Group 3 0.729 0.724 4663
Group 4 0.853 0.655 80
Group 5 0.919 0.900 376
All Points 0.697 0.691 5888
Original Points from NZ Population Data 41,127

Fig. 1. Occurrence data derived from NZ mesh blocks (left) with rarefied Group
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Pasierbinski, Przedpelska-Wasowicz, & Kristinsson, 2014). Maxent
was used to develop a model using the Auckland data and was then
projected into the entire New Zealand land mass. The same Bioclim
environmental layers were used set at the country-wide scale, and
similarly projected into the future climate scenario (RCP8.5 for year
2070 CCSM model). This approach was similar to those used when
projecting locally occurring species data to a global or wider
regional scales to model the spread of invasive species (Ficetola,
Thuiller, & Miaud, 2007; Thuiller et al., 2005), identify suitable
areas for translocations (Fouquet, Ficetola, Haigh,&Gemmell, 2010)
and investigate areas previously unexplored (Raxworthy et al.,
2003).

Model B used Auckland-based un-owned cat and human pop-
ulation densities to determine theminimumnon-zero value for un-
owned cat density in order to determine the cut-off value of pop-
ulation density to select official census areas (called mesh blocks)
serving as the basis for occurrence points. This was premised on the
5 based occurrence points (top right) and bias file rasters (bottom right).
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work of Aguilar and Farnworth (2012), where population density
was identified as a major factor indicating the presence of un-
owned cats. The mesh blocks were converted to point features
located at the centroid of each area to represent stray cat occur-
rence. This approach follows Arag�on, Coca-Abia, Llorente, and Lobo
(2013), who used centroids of municipal polygonal areas as pres-
ence points for modelling of locust species in Spain. This was also
similar to approaches that generate species occurrences from data
with varying spatial resolution of species presence records
(Howard et al., 2012; Kumar, Graham, West, & Evangelista, 2014).

Evident clustering of the occurrence data and the concentration
of smaller mesh blocks at high population density areas hints at
spatial autocorrelation. Spatial autocorrelation may result in model
being unable to predict spatially independent data, leading to
inflated performance measure values (Boria, Olson, Goodman, &
Anderson, 2014; Nazeri, Kumar, Jusoff, & Bahaman, 2014; Syfert,
Smith, & Coomes, 2013; Veloz, 2009). Therefore, the Spatially
Rarefy Occurrence Data in the SDMTooblox in ArcMap (Brown,
2014) was used as a filter by eliminating redundant or spatially
autocorrelated occurrence points within a range of specified dis-
tances (Brown, 2014). This step also included the grouping of
occurrence points based on land cover classes specified in the
Landcare Research (2014) Land Cover Database of New Zealand
(LCDB Version 4.0; Table 1). The analysis created groups of occur-
rence points which were used as input into a preliminary Maxent
run. Using the common evaluation metric for predictive perfor-
mance AUC (Area Under Curve; Swets, 1988), the group with the
highest AUC value was selected for running the final models and
projections.

The Bioclim environmental variables used in modelling were
found to be highly correlated (Metzger et al., 2013), leading to
Fig. 2. Maxent results for Model A including rarefied occurrence data from Auckland stray ca
2070 (top maps), thresholded presence for both conditions and range contraction/expansio
difficulties in interpreting the contribution of each variable to the
model. Using the SDMToolbox, highly correlated variables were
identified and excluded ensuring that uncorrelated variables were
used when Maxent was run.

To address errors associated with latitude and the commonly
encountered overfitting problem identified in Maxent (Anderson &
Raza, 2010; Elith et al., 2011; Radosavljevic & Anderson, 2014), bias
files were created. The first bias file corrected the error associated
with latitudinal accuracy of coordinate data where areas farther
from the equator have greater positional error. The second bias file
addressed the sampling area for collecting the background points
used for model evaluation. Normally, Maxent uses the entire area
for deriving background points. This results in a higher percentage
of commission errors or false positives due to the selection of
background points from localities that may be environmentally
suitable but not occupied by the species. Several approaches to
limit the area ranged from simple radial distances from known
occurrences to minimum convex polygons from occurrences to
more elaborate combinations of area definitions (Barbet-Massin,
Jiguet, Albert, & Thuiller, 2012; Brown, 2014; Phillips et al., 2009).
We selected the convex hull radial area connected with radial
buffers from the occurrences. The radial buffer distance was based
on home ranges collated from previous un-owned cat studies and
calculated as the distance between the centres of circles that have
areas equal to the maximum home range (Table 2). Compared to
mainly urban un-owned cats, feral cats in rural areas are considered
to have greater home ranges, with a minimum of 42 ha (Norbury,
Norbury, & Heyward, 1998) and a maximum of 2486 ha (Recio,
Mathieu, Maloney, & Seddon, 2010). This translated to a range
from 2.99 to 56.2 km using the radius of the home range area as the
end-to-end distance that the feral cat potentially travels. While
ts (inset), with suitability maps under current conditions, RCP8.5 climate conditions for
n (bottom maps).



Fig. 3. Results of Model B using data from mesh block data based New Zealand population for current conditions projection into RCP8.5 climate conditions for 2070 (top maps),
thresholded presence for both conditions and range contractions/expansions (bottom maps).
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rural feral home ranges were a magnitude greater than urban stray
cats' home range, we used these maximum estimates to set the
background area to account for the potential for un-owned cats to
become feral (Brown, 2014).

The availability of the latest scenarios for different future
bioclimatic conditions based on the 5th IPCC report made the
modelling of future suitability of stray cats possible (IPCC 2013;
Carraro, Lanza, & Tavoni, 2014). Using the worst case scenario of
RCP8.5, Bioclim layers for 2070 (NCAR, 2012) was included as a
projection to enable the comparison between current and future
suitability conditions for both Models A and B.

Resulting suitability maps were overlaid over the protected
areas of New Zealand as categorised in the IUCN system. Consisting
of 3954 areas over an area of 108,327 square kilometres, the cate-
gories included: Ia, Strict Nature Reserve; Ib, Wilderness Area; II,
National Park; III, National Monument; IV, Habitat Species Man-
agement Area; V, Protected Landscape and Seascape. Results of
clipping the suitability maps with protected areas showed which
areas were most suitable based on the output of the twomodels for
current and future conditions or scenarios. In order to compare the
scenarios, raster cells of the suitability maps within the protected
areas were counted based on their values and grouped into ordered
Table 4
Number of raster cells representing presence and absence resulting from thresholding c

Absent in both
(Non-occupancy)

Range contraction (Presence:
current conditions only)

Model A 78.3% 6.3%
Model B 48.4% 0.4%
classes depicting suitability (1: very low, 2: low, 3: medium, 4: high,
5: very high).

3. Results and discussion

Rarefication of location data for Auckland for Model A resulted
in 131 points that were not spatially autocorrelated, representing
4% of the original 2953 occurrences. For Model B, the minimum
population density cut-off value was 0.091 persons km�2 (i.e. the
population density threshold below which un-owned cats did not
occur). A total of 41,127 mesh blocks with population densities
greater than the cut off value were converted into point features
located at the centroid of each polygon. When the Spatially Rarefy
Occurrence Data included in the SDMToolbox was run, a total of
5888 points resulted, showing that 14% were non-spatially
correlated.

Results of the initial Maxent run for Models A and B using the set
of rarefied occurrences showed that Group 5 had better perfor-
mance compared to other groups (based on inspection of AUC
values). This was expected as the land cover types associated with
higher human population densities were mainly under the land
cover class for Group 5. Hence, the sets of points in Group 5 were
urrent and future suitability maps.

Range expansion (Presence:
future conditions only)

Present in both (Occupancy)

13.2% 2.3%
28.2% 23.0%
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used for both models (Table 3). The bias files included in the
Maxent model resulted from combining latitudinal bias with and
area coverage based on rarefied occurrence data (Fig. 1).

Results of Model A (using the Auckland stray cat data with
Bioclim variables and projected into the entire New Zealand land
mass with current and future climate conditions) showed changes
in the suitability for stray cats (Fig. 2). Areas in the North Island
were shown to have more favourable conditions compared to the
South Island with increasing areas for both in the future climate
scenario. This is consistent with the greater percentage of popula-
tion in the North Island with more areas favourable for the species.
When a 10th percentile presence logistic threshold for both current
and future conditions was used, an increase in the areas predicted
to be presence areas for stray cats was evident (Fig. 2).

Results of the population-based model (Model B) showed a
greater area of environmental suitability of New Zealand to stray
cats. Many of the population centers had greater values whilst
higher altitudes, remote wilderness and the majority of the South
Island were not as favourable. When the model was projected to
Fig. 4. IUCN categories of protected areas of New Zealand with protected areas in Auckland w
to the protected areas for Model A (right-top maps) and Model B (right-bottom maps).

Fig. 5. Comparison of Models A and B using raster counts categorized according to suitabilit
protected areas.
RCP8.5 for the year 2070, a result consistent with Model A was
shown, depicting wider and more intense suitability (Fig. 3).

A simple comparison of the two models showed better AUC
values reported for Model B. Therefore, better performance mea-
sures for using population density (as an analogue for un-owned
cats) compared to using actual presence data (from a local region
and expanding to a larger extent) was observed. Caution is war-
ranted in this result however, and further model validation as well
as testing with other occurrence data would be required to confirm
this observation. Both Models A and B showed an increase in the
number of presence cells at the 10th percentile presence threshold
in future conditions with Model B reporting presence at double the
number of cells as Model A (Table 4).

The maps of suitability should be considered only within the
limits of the Bioclim database environmental variables used in the
models. Another consideration is the background area used for the
calculating suitability. In Model A, particularly in the future sce-
nario, occurrence points were only available in the Auckland region
and limits to the background area cannot be determined when the
ith suitability of un-owned cats (inset map) and results of clipping the suitability maps

y for current and a future climate scenario (RPC8.5 for year 2070) within IUCN classed
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model was projected to a larger scale, resulting in the entire area
included in the calculation. In Model B, there may be room to
improve the background area available by changing the home range
values which serve as the basis for the background area calculation.
For both models, it was evident that the area deemed suitable for
un-owned cats is expected to increase quite substantially in a high
emission scenario.

Whilst the results of the Model A projection into entire New
Zealand area needs to be treated with caution, the resulting suit-
ability map of the Auckland Region is of value to planners and
managers of the region and the modelling experience may be of
value to other areas where occurrence data may be available (either
now or in the future).

When the suitability map of current conditions was combined
with the IUCN protected sites for the Auckland region (Fig. 4), the
highly suitable areas adjacent to important conservation sites
demonstrate the importance of monitoring and surveillance for
pest management purposes. These include protected areas such as
Tiritiri Matangi and Rangitoto Islands (inset map in Fig. 5), where
past and continuing pest eradication efforts include those focussed
on cats, possums and other small mammals that preyed on native
birds (Graham, Veitch, Aguilar, & Galbraith, 2013).

Clipping the resulting suitability maps with existing IUCN cat-
egories of protected areas of New Zealand showed the differences
between the models (Fig. 5) and the changes of suitability in cur-
rent conditions and the future scenario of RCP8.5 for 2070. A major
difference between the two models was the greater proportion of
suitable areas found in the North Island compared to the South
Island for Model B. In terms of the climate change scenario, a
movement of suitable areas to the South seems to be present in
Model A whilst in Model B, an increased concentration and areas
that are highly suitable in the North Island is evident.

When raster cells of the suitability maps within the IUCN pro-
tected areas were classified into five groups based on the risk scores
(1e very low, 2e low, 3emedium, 4e high and 5e very high) and
raster cell counts between current and future conditions compared,
differences between the models were evident (Fig. 5). Model B
predicted more highly suitable areas for the species and Model A
showed an increase in the area of low suitability, but, a decrease in
areas of medium suitability, no change in high suitability, and a
decrease in very high suitability by raster count. This was consistent
with the overall contraction and expansion data showing Model B
to have a much greater range expansion prediction.

4. Conclusion

Species distribution modelling provided a suitable approach to
visualize the spatial characteristics of stray cats in New Zealand and
investigate how they may impact areas that are considered to be
environmentally important. Modelling based on two data sources,
one from actual occurrence data and another using population
density as an analogue, provided a comparison of performance that
hinted at the advantages of the latter in cases when attempting to
project from a smaller region to a much wider geographical area.
Projections to a climate change-based scenario showed a consistent
increase in the area and intensity of areas suitable for un-owned
cats. Overlaying the protected areas of the country into the suit-
ability maps helped identify which protected areas were more
suitable for un-owned in current and a future climatic condition.
Further work in refining the models, gathering actual occurrence
data from the entire country and the use of bioclimatic layer rep-
resenting additional emission scenarios is needed to provide a
more comprehensive set of maps depicting the suitability of New
Zealand to stray cats. This approach could contribute to the
development of un-owned cat management strategies through the
establishment of NZ-wide suitability maps under both current and
future conditions.
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