106 research outputs found

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Measurement of the cross-section for b-jets produced in association with a Z boson at root s=7 TeV with the ATLAS detector ATLAS Collaboration

    Get PDF
    A measurement is presented of the inclusive cross-section for b-jet production in association with a Z boson in pp collisions at a centre-of-mass energy of root s = 7 TeV. The analysis uses the data sample collected by the ATLAS experiment in 2010, corresponding to an integrated luminosity of approximately 36 pb(-1). The event selection requires a Z boson decaying into high P-T electrons or muons, and at least one b-jet, identified by its displaced vertex, with transverse momentum p(T) > 25 GeV and rapidity vertical bar y vertical bar < 2.1. After subtraction of background processes, the yield is extracted from the vertex mass distribution of the candidate b-jets. The ratio of this cross-section to the inclusive Z cross-section (the average number of b-jets per Z event) is also measured. Both results are found to be in good agreement with perturbative QCD predictions at next-to-leading order

    Monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    Get PDF
    The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electron and photon kinematic properties. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton-proton luminosity recorded by ATLAS at a centre-of-mass energy of 7-8 TeV had calorimeter data quality suitable for physics analysis

    Drons col·laboratius

    Get PDF
    La robòtica col·laborativa és senzillament robots dissenyats per dur a terme treballs de col·laboració amb els humans. Els robots col·laboratius o cobots són cada cop més utilitzats a les indústries. La robòtica col·laborativa és un dels àmbits d'actualitat en aquests moments. Però també és un dels més interessants en més d'un sentit. Com es comuniquen dos drons autònoms que col·laboren per fer una tasca? Com són aquests missatges que s'envien? Que poden fer que no podrien fer sols? Aquestes són algunes de les preguntes que ens volem respondre en aquest projecte. En aquest treball es presenta un disseny i implementació de dos drons terrestres que es comuniquen per col·laborar entre ells per resoldre una tasca.Collaborative robotics is simply robots designed to perform collaborative work with humans. Collaborative robots or cobots are increasingly used in industries. Collaborative robotics is one of the current topics now. But it is also one of the most interesting in more ways than one. How do two autonomous drones that collaborate to perform a task communicate? How are these messages sent? What can they do that they could not do alone? These are some of the questions we want to answer in this project. This work presents a design and implementation of two ground drones that communicate to collaborate with each other to solve a task.La robótica colaborativa es sencillamente robots diseñados para llevar a cabo trabajos de colaboración con los humanos. Los robots colaborativos o cobots son cada vez más utilizados en las industrias. La robótica colaborativa es uno de los ámbitos de actualidad. Pero también es uno de los más interesantes en más de un sentido. ¿Cómo se comunican drones autónomos que colaboran para hacer una tarea? ¿Cómo son estos mensajes que es envían? ¿Qué pueden hacer que no lo podrían hacer solos? Estas son algunas de las preguntas que queremos responder con este proyecto. En este trabajo se presenta un diseño e implementación de dos drones terrestres que se comunican para colaborar entre ellos para resolver una tarea

    Aspects of the ecology of killer whale (<i>Orcinus orca Linn.</i>) groups in the near-shore waters of Sub-Antarctic Macquarie Island

    No full text
    Occurrences of killer whales (Orcinus orca) in the waters surrounding Sub-Antarctic Macquarie Island have been recorded since the 1820s; however, their presence only became the focus of scientific research in the mid-1990s. The analyses of sightings data collected from the island between 1986 and 2015 are presented herein. The study provides evidence of a relationship between killer whale sighting probability and seasonal prey availability. Killer whales were present at the island year-round with a distinct seasonal peak in November–December, and coincident with a peak in occurrence of southern elephant seals (Mirounga leonina) due to breeding season activity, particularly the dispersal of weaned pups. Supporting this association and killer whales’ top-down influence on the survival of juvenile and adult southern elephant seals, pinnipeds accounted for 79% of prey identified, with weaned southern elephant seal pups contributing over a quarter of feeding events observed in the near-shore environment. Fur seals and penguins were also identified as prey. Killer whale groups had a median group size of three individuals, and groups of three to five individuals were most often observed feeding/milling in near-shore waters. The largest range in group sizes were observed during their peak occurrence in early summer, particularly in the number of sub-adult and female whales per group. Adult males made up 75% of single occurrences, and singletons were most often observed travelling. Overall, the ecology of killer whales at Macquarie Island was similar to that of killer whales studied at other Sub-Antarctic locations, with comparable seasonality, behaviour, diet, and group structure. Much remains to be learnt regarding the seasonal movements of whales and their diet at other times of year, their relationship to killer whales sighted in coastal Australian, New Zealand and Antarctic ecosystems, and impact on diet from commercial fisheries operations and fluctuating prey populations.</p
    corecore