691 research outputs found

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Diversification across an altitudinal gradient in the Tiny Greenbul (Phyllastrephus debilis) from the Eastern Arc Mountains of Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Eastern Arc Mountains of Africa have become one of the focal systems with which to explore the patterns and mechanisms of diversification among montane species and populations. One unresolved question is the extent to which populations inhabiting montane forest interact with those of adjacent lowland forest abutting the coast of eastern Africa. The Tiny Greenbul (<it>Phyllastephus debilis</it>) represents the only described bird species within the Eastern Arc/coastal forest mosaic, which is polytypic across an altitudinal gradient: the subspecies <it>albigula </it>(green head) is distributed in the montane Usambara and Nguru Mountains whereas the subspecies <it>rabai </it>(grey head) is found in Tanzanian lowland and foothill forest. Using a combination of morphological and genetic data, we aim to establish if the pattern of morphological differentiation in the Tiny Greenbul (<it>Phyllastrephus debilis</it>) is the result of disruptive selection along an altitudinal gradient or a consequence of secondary contact following population expansion of two differentiated lineages.</p> <p>Results</p> <p>We found significant biometric differences between the lowland (<it>rabai</it>) and montane (<it>albigula</it>) populations in Tanzania. The differences in shape are coupled with discrete differences in the coloration of the underparts. Using multi-locus data gathered from 124 individuals, we show that lowland and montane birds form two distinct genetic lineages. The divergence between the two forms occurred between 2.4 and 3.1 Myrs ago.</p> <p>Our coalescent analyses suggest that limited gene flow, mostly from the subspecies <it>rabai </it>to <it>albigula</it>, is taking place at three mid-altitude localities, where lowland and montane rainforest directly abut. The extent of this introgression appears to be limited and is likely a consequence of the recent expansion of <it>rabai </it>further inland.</p> <p>Conclusion</p> <p>The clear altitudinal segregation in morphology found within the Tiny Greenbul is the result of secondary contact of two highly differentiated lineages rather than disruptive selection in plumage pattern across an altitudinal gradient. Based on our results, we recommend <it>albigula </it>be elevated to species rank.</p

    Autoregulation in resistance training : addressing the inconsistencies

    Get PDF
    Autoregulation is a process that is used to manipulate training based primarily on the measurement of an individual's performance or their perceived capability to perform. Despite being established as a training framework since the 1940s, there has been limited systematic research investigating its broad utility. Instead, researchers have focused on disparate practices that can be considered specific examples of the broader autoregulation training framework. A primary limitation of previous research includes inconsistent use of key terminology (e.g., adaptation, readiness, fatigue, and response) and associated ambiguity of how to implement different autoregulation strategies. Crucially, this ambiguity in terminology and failure to provide a holistic overview of autoregulation limits the synthesis of existing research findings and their dissemination to practitioners working in both performance and health contexts. Therefore, the purpose of the current review was threefold: first, we provide a broad overview of various autoregulation strategies and their development in both research and practice whilst highlighting the inconsistencies in definitions and terminology that currently exist. Second, we present an overarching conceptual framework that can be used to generate operational definitions and contextualise autoregulation within broader training theory. Finally, we show how previous definitions of autoregulation fit within the proposed framework and provide specific examples of how common practices may be viewed, highlighting their individual subtleties

    Analysis of the Expression, Secretion and Translocation of the Salmonella enterica Type III Secretion System Effector SteA

    Get PDF
    Many Gram-negative pathogens possess virulence-related type III secretion systems. Salmonella enterica uses two of these systems, encoded on the pathogenicity islands SPI-1 and SPI-2, respectively, to translocate more than 30 effector proteins into eukaryotic host cells. SteA is one of the few effectors that can be translocated by both systems. We investigated the conditions affecting the synthesis of this effector, its secretion to culture media and its translocation into host cells. Whereas steA was expressed under a wide range of conditions, some factors, including low and high osmolarity, and presence of butyrate, decreased expression. SteA was efficiently secreted to the culture media under both SPI-1 and SPI-2 inducing conditions. The kinetics of translocation into murine macrophages and human epithelial cells was studied using fusions with the 3xFLAG tag, and fusions with CyaA from Bordetella pertussis. Translocation into macrophages under non-invasive conditions was mainly dependent on the SPI-2-encoded type III secretion system but some participation of the SPI-1 system was also detected 6 hours post-infection. Interestingly, both type III secretion systems had a relevant role in the translocation of SteA into epithelial cells. Finally, a deletion approach allowed the identification of the N-terminal signal necessary for translocation of this effector. The amino acid residues 1–10 were sufficient to direct translocation into host cells through both type III secretion systems. Our results provide new examples of functional overlapping between the two type III secretion systems of Salmonella

    Comparative Live-Cell Imaging Analyses of SPA-2, BUD-6 and BNI-1 in Neurospora crassa Reveal Novel Features of the Filamentous Fungal Polarisome

    Get PDF
    A key multiprotein complex involved in regulating the actin cytoskeleton and secretory machinery required for polarized growth in fungi, is the polarisome. Recognized core constituents in budding yeast are the proteins Spa2, Pea2, Aip3/Bud6, and the key effector Bni1. Multicellular fungi display a more complex polarized morphogenesis than yeasts, suggesting that the filamentous fungal polarisome might fulfill additional functions. In this study, we compared the subcellular organization and dynamics of the putative polarisome components BUD-6 and BNI-1 with those of the bona fide polarisome marker SPA-2 at various developmental stages of Neurospora crassa. All three proteins exhibited a yeast-like polarisome configuration during polarized germ tube growth, cell fusion, septal pore plugging and tip repolarization. However, the localization patterns of all three proteins showed spatiotemporally distinct characteristics during the establishment of new polar axes, septum formation and cytokinesis, and maintained hyphal tip growth. Most notably, in vegetative hyphal tips BUD-6 accumulated as a subapical cloud excluded from the Spitzenkörper (Spk), whereas BNI-1 and SPA-2 partially colocalized with the Spk and the tip apex. Novel roles during septal plugging and cytokinesis, connected to the reinitiation of tip growth upon physical injury and conidial maturation, were identified for BUD-6 and BNI-1, respectively. Phenotypic analyses of gene deletion mutants revealed additional functions for BUD-6 and BNI-1 in cell fusion regulation, and the maintenance of Spk integrity. Considered together, our findings reveal novel polarisome-independent functions of BUD-6 and BNI-1 in Neurospora, but also suggest that all three proteins cooperate at plugged septal pores, and their complex arrangement within the apical dome of mature hypha might represent a novel aspect of filamentous fungal polarisome architecture

    Droplet group production in an AC electro-flow-focusing microdevice

    Get PDF
    We report the production of droplet groups with a controlled number of drops in a microfluidic electro-flow focusing device under the action of an AC electric field. This regime appears for moderate voltages (500-700 V peak-to-peak) and signal frequencies between 25 and 100 Hz, much smaller than the droplet production rate ( ≈500 Hz). For this experimental conditions the production frequency of a droplet package is twice the signal frequency. Since the continuous phase flow in the microchannel is a Hagen-Poiseuille flow, the smaller droplets of a group move faster than the bigger ones leading to droplet clustering downstream.Ministerio de Economía y Competitividad DPI2013-46485-C3-1-RMinisterio de Economía y Competitividad FIS2014-54539- PJunta de Andalucía P11-FQM-791
    corecore