846 research outputs found

    Collapse of Amphibian Communities Due to an Introduced Ranavirus

    Get PDF
    This work was supported by Natural Environment Research Council grant NE/G011885/1, the Systematics and Taxonomy (SynTax) research scheme administered by the Linnean Society of London, the FundaciĂłn General CSIC, Banco Santander, and European Research Council grant 260801-BIG-IDE

    The molecular characterisation of Escherichia coli K1 isolated from neonatal nasogastric feeding tubes

    Get PDF
    Background: The most common cause of Gram-negative bacterial neonatal meningitis is E. coli K1. It has a mortality rate of 10–15%, and neurological sequelae in 30– 50% of cases. Infections can be attributable to nosocomial sources, however the pre-colonisation of enteral feeding tubes has not been considered as a specific risk factor. Methods: Thirty E. coli strains, which had been isolated in an earlier study, from the residual lumen liquid and biofilms of neonatal nasogastric feeding tubes were genotyped using pulsed-field gel electrophoresis, and 7-loci multilocus sequence typing. Potential pathogenicity and biofilm associated traits were determined using specific PCR probes, genome analysis, and in vitro tissue culture assays. Results: The E. coli strains clustered into five pulsotypes, which were genotyped as sequence types (ST) 95, 73, 127, 394 and 2076 (Achman scheme). The extra-intestinal pathogenic E. coli (ExPEC) phylogenetic group B2 ST95 serotype O1:K1:NM strains had been isolated over a 2 week period from 11 neonates who were on different feeding regimes. The E. coli K1 ST95 strains encoded for various virulence traits associated with neonatal meningitis and extracellular matrix formation. These strains attached and invaded intestinal, and both human and rat brain cell lines, and persisted for 48 h in U937 macrophages. E. coli STs 73, 394 and 2076 also persisted in macrophages and invaded Caco-2 and human brain cells, but only ST394 invaded rat brain cells. E. coli ST127 was notable as it did not invade any cell lines. Conclusions: Routes by which E. coli K1 can be disseminated within a neonatal intensive care unit are uncertain, however the colonisation of neonatal enteral feeding tubes may be one reservoir source which could constitute a serious health risk to neonates following ingestion

    Robust estimation of microbial diversity in theory and in practice

    Get PDF
    Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao's estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics ("Hill diversities"), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao's estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.Comment: To be published in The ISME Journal. Main text: 16 pages, 5 figures. Supplement: 16 pages, 4 figure

    Arterial line pressure control enhanced extracorporeal blood flow prescription in hemodialysis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In hemodialysis, extracorporeal blood flow (Qb) recommendation is 300–500 mL/min. To achieve the best Qb, we based our prescription on dynamic arterial line pressure (DALP).</p> <p>Methods</p> <p>This prospective study included 72 patients with catheter Group 1 (G1), 1877 treatments and 35 arterio-venous (AV) fistulae Group 2 (G2), 1868 treatments. The dialysis staff was trained to prescribe Qb sufficient to obtain DALP between -200 to -250 mmHg. We measured ionic clearance (IK: mL/min), access recirculation, DALP (mmHg) and Qb (mL/min). Six prescription zones were identified: from an optimal A zone (Qb > 400, DALP -200 to -250) to zones with lower Qb E (Qb < 300, DALP -200 to -250) and F (Qb < 300, DALP > -199).</p> <p>Results</p> <p>Treatments distribution in A was 695 (37%) in G1 vs. 704 (37.7%) in G2 (<it>P </it>= 0.7). In B 150 (8%) in G1 vs. 458 (24.5%) in G2 (<it>P </it>< 0.0001). Recirculation in A was 10.0% (Inter quartile rank, IQR 6.5, 14.2) in G1 vs. 9.8% (IQR 7.5, 14.1) in G2 (<it>P </it>= 0.62). IK in A was 214 ± 34 (G1) vs. 213 ± 35 (G2) (<it>P </it>= 0.65). IK Anova between G2 zones was: A vs. C and D (<it>P </it>< 0.000001). Staff prescription adherence was 81.3% (G1) vs. 84.1% (G2) (<it>P </it>= 0.02).</p> <p>Conclusion</p> <p>In conclusion, an optimal Qb can de prescribed with DALP of -200 mmHg. Staff adherence to DLAP treatment prescription could be reached up to 81.3% in catheters and 84.1% in AV fistulae.</p

    Impact of time since last caloric intake on blood glucose levels

    Get PDF
    Blood glucose (BG) is usually measured after a caloric restriction of at least 8 h; however evidence-based recommendations for the duration of a fasting status are missing. Here we analyze the effect of fasting duration on levels of BG to determine the minimal fasting duration to achieve comparable BG levels to conventional fasting measurements. We used data of a cross-sectional study on primary care patients, performed in October 2005. We included 28,024 individuals (age-range 18–99 years; 63% women) without known diabetes mellitus and without missing data for BG and fasting status. We computed general linear models, adjusting for age, sex, time of blood withdrawal, systolic blood pressure, waist circumference, total- and HDL-cholesterol, physical activity, smoking, intake of beta-blocker and alcohol. We tested the intra-individual variability with respect to fasting status. Overall, the mean BG differed only slightly between individuals fasting ≄8 h and those fasting <8 h (men: 5.1 ± 0.8 mmol/L versus 5.2 ± 1.2 mmol/L; women: 4.9 ± 0.7 mmol/L, 5.0 ± 1.0 mmol/L). After 3 h of fasting differences of BG diminished in men to −0.08 mmol/L (95%-CI: −0.15; −0.01 mmol/L), in women to −0.07 mmol/L (−0.12; −0.03 mmol/L) compared to individuals fasting ≄8 h. Noteworthy, age, time of day of blood withdrawal, physical activity, and intake of hard liquor influenced BG levels considerably. Our data challenge the necessity for a fasting duration of ≄8 h when measuring blood glucose, suggesting a random sampling or a fasting duration of 3 h as sufficient. Rather, our study indicates that essentially more effort on the assessment of additional external/internal factors on BG levels is necessary

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore