276 research outputs found

    Criticism and Rework of Homeric Narrative in Dio's Trojan Discourse

    Get PDF
    Dio Chrysostom, in his Trojan Discourse (Speech 11) rewrites the story of the Trojan War in a new and different way (with Trojans’ victory over Greeks, the murder of Hector by Achilles, and so on), in contrast with the tale of the Iliad and under the pretense of an historical reconstruction. He preys on Homeric narrative techniques (such as the selective and motivated plot of the Iliad, and the first-person tale in the Odyssey), in order to disprove the traditional version of the legend and to pave the way for a new view. Dio takes a metaliterary and intertextual approach to Homeric epics, insofar as he criticizes and deconstructs their narratives (bearing in mind Homeric criticism by Aristotle and by Alexandrine grammarians), in order to rebuild the story anew. He also provides a specimen of generic crossing, since he frames an epic subject in the context of a prose speech that belongs to epidictic oratory and that simulates some historiographical practices.Dio Chrysostom, in his Trojan Discourse (Speech 11) rewrites the story of the Trojan War in a new and different way (with Trojans’ victory over Greeks, the murder of Hector by Achilles, and so on), in contrast with the tale of the Iliad and under the pretense of an historical reconstruction. He preys on Homeric narrative techniques (such as the selective and motivated plot of the Iliad, and the first-person tale in the Odyssey), in order to disprove the traditional version of the legend and to pave the way for a new view. Dio takes a metaliterary and intertextual approach to Homeric epics, insofar as he criticizes and deconstructs their narratives (bearing in mind Homeric criticism by Aristotle and by Alexandrine grammarians), in order to rebuild the story anew. He also provides a specimen of generic crossing, since he frames an epic subject in the context of a prose speech that belongs to epidictic oratory and that simulates some historiographical practices

    Review of: The inhibitor of cyclin-dependent kinase 4a/alternative reading frame (INK4a/ARF) locus encoded proteins p16INK4a and p19ARF repress cyclin D1 transcription through distinct cis elements

    Get PDF
    Commentary of the article: D’Amico M., Wu K., Fu M., Rao M., Albanese C., Russell R. G., Lian H., Bregman D., White M. A., Pestell R. G. Cancer Research 2004 Jun 15; 64(12): 4122–4130

    A combinatorial approach to gene expression analysis: DNA microarrays.

    Get PDF
    The microarray technology is based on analytical tools that parallelize the quantitative and qualitative analysis of nucleic acids, proteins and tissue sections one of its more recent evolutions-. By miniaturizing the size of the reaction and sensing area, microarrays allow to assess at the activity of thousands of genes in a given tissue or cell line at once in a rapid and quantitative way, and to carry out serial comparative tests in multiple samples. These tools, that stem from the innovations resulting from the technological improvements and knowledge arising from the genome sequencing projects, can be considered as a combinatorial technique that can rapidly provide significant information about complex cellular pathways and processes within one or few ‘‘mass scale’’ and comprehensive testing of a biological sample’s composition

    Comparative gene expression profiling reveals partially overlapping but distinct genomic actions of different antiestrogens in human breast cancer cells.

    Get PDF
    Antiestrogens used for breast cancer (BC) treatment differ among each other for the ability to affect estrogen receptor (ER) activity and thereby inhibit hormone-responsive cell functions and viability. We used high-density cDNA microarrays for a comprehensive definition of the gene pathways affected by 17b-estradiol (E2), ICI 182,780 (ICI), 4OH- tamoxifen (Tamoxifen), and raloxifene (RAL) in ER-positive ZR-75.1 cells, a suitable model to investigate estrogen and antiestrogen actions in hormone-responsive BC. The expression of 601 genes was significantly affected by E2 in these cells; in silico analysis reveals that 86 among them include one or more potential ER binding site within or near the promoter and that the binding site signatures for E2F-1, NF-Y, and NRF-1 transcription factors are significantly enriched in the promoters of genes induced by estrogen treatment, while those for CAC-binding protein and LF-A1 in those repressed by the hormone, pointing to novel transcriptional effectors of secondary responses to estrogen in BC cells. Interestingly, expression of 176 E2- regulated mRNAs was unaffected by any of the antiestrogens tested, despite the fact that under the same conditions the transcriptional and cell cycle stimulatory activities of ER were inhibited. On the other hand, of 373 antiestrogen-responsive genes identified here, 52 were unresponsive to estrogen and 25% responded specifically to only one of the compounds tested, revealing non-overlapping and clearly distinguishable effects of the different antiestrogens in BC cells. As some of these differences reflect specificities of the mechanism of action of the antiestrogens tested, we propose to exploit this gene set for characterization of novel hormonal antagonists and selective estrogen receptor modulators (SERMs) and as a tool for testing new associations of antiestrogens, more effective against BC

    Hormone-replacement therapy influences gene expression profiles and is associated with breast-cancer prognosis: a cohort study

    Get PDF
    BACKGROUND: Postmenopausal hormone-replacement therapy (HRT) increases breast-cancer risk. The influence of HRT on the biology of the primary tumor, however, is not well understood. METHODS: We obtained breast-cancer gene expression profiles using Affymetrix human genome U133A arrays. We examined the relationship between HRT-regulated gene profiles, tumor characteristics, and recurrence-free survival in 72 postmenopausal women. RESULTS: HRT use in patients with estrogen receptor (ER) protein positive tumors (n = 72) was associated with an altered regulation of 276 genes. Expression profiles based on these genes clustered ER-positive tumors into two molecular subclasses, one of which was associated with HRT use and had significantly better recurrence free survival despite lower ER levels. A comparison with external data suggested that gene regulation in tumors associated with HRT was negatively correlated with gene regulation induced by short-term estrogen exposure, but positively correlated with the effect of tamoxifen. CONCLUSION: Our findings suggest that post-menopausal HRT use is associated with a distinct gene expression profile related to better recurrence-free survival and lower ER protein levels. Tentatively, HRT-associated gene expression in tumors resembles the effect of tamoxifen exposure on MCF-7 cells

    Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation

    Get PDF
    Background: Estrogen receptors alpha (ERa) and beta (ERb) are transcription factors (TFs) that mediate estrogen signaling and define the hormone-responsive phenotype of breast cancer (BC). The two receptors can be found co-expressed and play specific, often opposite, roles, with ERb being able to modulate the effects of ERa on gene transcription and cell proliferation. ERb is frequently lost in BC, where its presence generally correlates with a better prognosis of the disease. The identification of the genomic targets of ERb in hormone-responsive BC cells is thus a critical step to elucidate the roles of this receptor in estrogen signaling and tumor cell biology. Results: Expression of full-length ERb in hormone-responsive, ERa-positive MCF-7 cells resulted in a marked reduction in cell proliferation in response to estrogen and marked effects on the cell transcriptome. By ChIP-Seq we identified 9702 ERb and 6024 ERa binding sites in estrogen-stimulated cells, comprising sites occupied by either ERb, ERa or both ER subtypes. A search for TF binding matrices revealed that the majority of the binding sites identified comprise one or more Estrogen Response Element and the remaining show binding matrixes for other TFs known to mediate ER interaction with chromatin by tethering, including AP2, E2F and SP1. Of 921 genes differentially regulated by estrogen in ERb+ vs ERb- cells, 424 showed one or more ERb site within 10 kb. These putative primary ERb target genes control cell proliferation, death, differentiation, motility and adhesion, signal transduction and transcription, key cellular processes that might explain the biological and clinical phenotype of tumors expressing this ER subtype. ERb binding in close proximity of several miRNA genes and in the mitochondrial genome, suggests the possible involvement of this receptor in small non-coding RNA biogenesis and mitochondrial genome functions. Conclusions: Results indicate that the vast majority of the genomic targets of ERb can bind also ERa, suggesting that the overall action of ERb on the genome of hormone-responsive BC cells depends mainly on the relative concentration of both ERs in the cell

    Closure and the Book of Virgil

    Get PDF
    corecore