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I. INTRODUCTION

The microarray technology is based on analytical tools that parallelize the
quantitative and qualitative analysis of nucleic acids, proteins and tissue
sections one of its more recent evolutions-. By miniaturizing the size of the
reaction and sensing area, microarrays allow to assess at the activity of
thousands of genes in a given tissue or cell line at once in a rapid and
quantitative way, and to carry out serial comparative tests in multiple
samples. These tools, that stem from the innovations resulting from the
technological improvements and knowledge arising from the genome
sequencing projects, can be considered as a combinatorial technique that
can rapidly provide significant information about complex cellular pathways
and processes within one or few ‘‘mass scale’’ and comprehensive testing of
a biological sample’s composition.

DNA microarrays, the focus of this review, deals predominantly with their
application to genome-wide gene expression analysis (gene expression
profiling). They are formed by a planar support, usually a glass microscopy
slide, allowing the binding of nucleic acids (cDNA or oligonucleotides) or, in
other cases, proteins and oligopeptides. Are defined ‘‘probes’’ the detector
molecules immobilized on the surface of the slide and ‘‘targets’’ the mixtures
being interrogated [1]. The slides, each containing up to several thousands
probes arranged in ordered arrays, are used to analyze labeled samples,
generally prepared by fluorescent tagging of nucleic acids (DNA or RNA)
extracted from a cellular or tissue sample under investigation. Specific binding
of the unique components, of the tested sample, mix to its complementary
probe, immobilized on the solid support, leading to the appearance of ‘‘spots’’
the glow of which is proportional to the activity of the expressed gene.

The microarray technology was developed at the Stanford University in the
early 1990s [2]. From the beginning, it was clear that this technique could have
the same impact in biomedical and biotechnological research as the
‘‘polymerase chain reaction’’ (PCR) had in the 1980s. PCR reactions are
even now extensively used in microarray manufacturing.

The microarray technology is unique as no other analytical approach
allows to explore to such an extent the biochemical complexity of biological
samples and combines expertise from many different disciplines such as
biology, chemistry, physics, engineering, mathematics, and computer science.
The role of the recombinant DNA technology, developed in the 1970s, was
important not only for the discovery of the enzymatic tools used in the
microarray technology, such as RNA and DNA polymerases, but also for the
tools and techniques it made available, in particular the cDNA libraries and
nucleic acids hybridization protocols. The microarray technology required a
modification of the hybridization techniques to make them suitable for a glass
support. The first hybridization on glass was performed in the early 1990s.
Rapid, efficient and cost effective chemical synthesis of natural and derivatized
polynucleotides, is one more domain whose progress made possible the
advent of the ‘‘microarray era.’’ This also required the full development of the
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fluorescent microscopy technology. Since 1970, fluorescent dyes are used for
cell biology and microscopy studies, some of which are later being adapted
for nucleic acid labeling. Microscopic analysis of chromosome structure
by florescence in situ hybridization (FISH) is an example. The evolution of
more sophisticated fluorescence microscopy devices, such as that of confocal
microscopes in the 1990s, was necessary for the development of efficient
microarray reading tools (see below). The above mentioned know-how,
combined with the development of combinatorial oligonucleotides synthesis,
the improvement of linker and surface synthesis technologies and detection
methods led to the development of the first microarray assay in 1995.
Furthermore, all this and the work that introduced robotization in microarrays
manufacturing paved the way to the present success and diffusion of DNA
microarray applications for gene expression profiling.

A. THE DNA MICROARRAY: COMPONENTS AND CHARACTERISTICS

A DNA microarray, also known as DNA chip, gene chip or more generically
biochip, is a microscopic slide on which multiple DNA samples are
deposited (‘‘spotted’’) in predefined positions to constitute an ordered array
of probe elements. The chemical nature of these probes in the arrays used for
quantitative gene expression analysis can be different, e.g. DNA, PNA or
RNA, although in most cases they are represented by cDNAs or chemically
synthesized oligonucleotides. The amount of probes to be spotted (optimal
probe concentration) as well as the number of spots for unit of area (optimal
probe density) is first evaluated experimentally, as these parameters greatly
depend upon the detection protocol and device to be implemented and the
nature of the experimental test. The microarray surface plays an important
role in determining the probe binding efficiency and specificity and the
sensitivity of the detection step which greatly affects the quality of the data
generated. To be used as analytical devices for genome-wide gene expression
studies, arrays of probes which are planar, microscopic and specific are to
be put in order. The array elements (‘‘spots’’) are put in orders in rows and
columns that so the columns cross the rows in a perpendicular manner. The
ordered elements have, as much as possible, the same size, spacing and a
unique location on the array, to facilitates manufacture of the slide, as well as
design and application of microarray reading devices and software for
image and data analysis. Regularity of spot spacing is a prerequisite for
correct data analysis, as it enables the use of standard analysis templates, while
the uniformity of the spot size is required for quantitation and assay precision,
as this ensures that the same amount of probe is spotted in each location.
Quantitation templates are grids superimposed to the graphical image
generated by the scanner, necessary to define the borders of each element
and to calculate, for every one of them, its signal intensity and the relative
statistics (‘‘shape’’), considering the pixels included within the area delimited by
these borders. The presence of microscopic spots on the slide enables the
examination of a large number of genes, up to an entire genome, with a single
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test and is a necessary prerequisite for automation of the whole process.
The slide surface has to be planar since a planar support allows an accurate
scanning and imaging, due to the uniform detection distance between the
optical element and the microarray surface. Furthermore, this surface needs to
be impermeable to liquids, allowing the use of a small reaction (hybridization)
volume. Specific recognition between the probes on the array and the target is
the key criterion of microarray-based nucleic acids analysis, as it allows precise
quantitation of the amount of molecules present in the sample. This aspect is
also important for the statistical evaluation of the data (reproducibility,
precision, confidence level, etc.).

B. THE DNA MICROARRAY TECHNOLOGY

Modern microarray technology interfaces biology, engineering and physics.
Five steps are necessary to perform a microarray experiment: microarray
manufacture, probe labeling, hybridization, detection and data analysis
(Figure 23.1). In this section the general concepts of this technique are briefly
discussed. An important prerequisite to what follows is the concept that the
biological question addressed is a key determinant in the design of a
microarray experiment, as its formulation dictates not only the technological
platform to be selected but also other experimental parameters, such as positive
and negative controls, reference and the strategies to apply for computational
analysis of the resulting data.

Several criteria need to be kept into account for the choice of a microarray
manufacture procedure, including the need to be able to use the technology in a
given laboratory setting, the time required for its production or its analysis, the
probe content (the total amount of DNA probes delivered on the slide) and
density (number of target spots per unit area), the spot size, the purity and the
reactivity of the element spotted and the overall costs. The microarray
manufacturing technologies are in continuous evolution and they already
ensure mass production of biochips as well as assay automation, leading to
improved quality, dissemination and reproducibility of the experiments and,
cost effectiveness in the near future. As more extensively reported in other
sections that follow, DNA chip manufacturing technology follows two
different approaches, known as ‘‘delivery’’ and ‘‘synthesis.’’ In the first case
(Figure 23.1a) the probes, usually DNAs generated by PCR amplification of
cloned cDNAs or synthetic oligonucleotides, are transferred to the slide surface
by automatic robotic platforms. This was the way used for the preparation of
the first microarray ever. The synthesis approach, currently applicable only to
oligonucleotide arrays, foresees that all probes are synthesized in situ by light-
driven chemical reactions, one base at a time, till the desired oligonucleotide is
synthesized in each array position (Affymetrix� technology: Figure 23.1b).

The target for microarray experiments can be of different nature. Nucleic
acids are more commonly used nowdays. Diverse techniques can be used for
target labeling. Selection in each case dependsupon the molecular and
biological nature of the target. Binding of the labeled target necleic acids to
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the probe onto the microarray occurs by molecular hybridization. Conditions
for hybridization, and slide washing to remove targets unspecifically bound to
the slide and/or to the probe, are experimentally determined, as they relate
to the nature of the biochip and can be differentiated in order to achieve the
degree of specificity desired. Once hybridized, the microarray is scanned with a

FIGURE 23.1 Schematic representation of genome-scale gene expression analysis
with DNA microarrays. (a) DNA microarrays produced by probe deposition; (b)

Oligonucleotide microarrays produced by in situ probe synthesis (Affymetrix�

technology).
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detection device in an automated manner. Fluorescent detection schemes,
to detect very low concentrations of label, are generally used. The devices to
detect the fluorescent signal on such slides are either (laserpowered) scanners or
imagers. In both cases, the fluorescent dyes are excited and the emitted
fluorescence is read by converting its stream of photons into an electrical
current that, in turn, is transformed in to digital values that can be stored
and analyzed by a computer. The processes by which numerical values are
obtained from the data files in a format that can provide information helpful
to determine each target’s concentration in the original mixture, is known
as quantitation. Bioinformatics and computational approaches are then
used for data normalization, mining and modeling. In this respect, availability
of comprehensive electronic libraries and database containing various
functional and structural information on genes or proteins provide a great
advantage in the interpretation of gene expression data. This is to be be
discussed in detail later.

Each step of microarray technology is still evolving at a high pace and
several modifications of the original, basic technology described here are
being continuously introduced, while ever increasing new applications and
improvements are further expected [1, 3–5].

II. A CLOSER LOOK TO THE DNA MICROARRAY TECHNOLOGY

A typical gene expression profiling experiment takes place in fue separate
processes. They are (i) microarray fabrication, (ii) purification and labeling of
the target material, (iii) hybridization, (iv) detection and (v) data analysis. The
characteristics of each step was briefly discussed in the introduction. A closer
look to each of these steps is the object of this section. Here we would mainly
refer to biochips where the probe is constituted by nucleic acids (DNA
microarrays).

A. MICROARRAY FABRICATION: SOLID SUPPORT, PROBE SYNTHESIS

AND IMMOBILIZATION TECHNIQUES

The microarray assay is based on hybridization reactions between labeled
single stranded molecules in solution (target) and complementary molecules
immobilized on the flat surface of the slide (probe). The fabrication of a
microarray requires the synthesis of the target and its deposition on the slide
surface (deposition technology). Alternatively, a different approach involving
the synthesis of the target directly onto the surface can also be employed.

The slide surface has to be planar, uniform, inert and accessible. Several
materials can provide slides with these characteristics, but the glass surface is
the most commonly used for fluorescent labeling, since most plastics do not
permit the use of fluorescent dyes. Different glasses are available that are
suitable for slide preparation (borosilicate, fused silica, etc.) and all stable
materials with low intrinsic fluorescence and reflectivity and an efficient
transmission throughout the visible range. In order to allow the efficient
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attachment of nucleic acids to the surface of the glass, various chemical
pre-treatments of the slide are applied, including the most used: (i) poly-lysine
covered glasses, with positive charged surface where unmodified nucleic
acids can be bound and fixed by UV cross-linking; (ii) aldehyde covered
slides, that attach DNAs carrying amino-modified end nucleotides and
(iii) amine covered slides, that also provide a positive charged surface.
The choice between these options will depend on the experimental procedures.

The first step of microarray fabrication process is the synthesis of the
probe, commonly, constituted by PCR products or oligonucleotides.

1. Printing Microarrays with PCR Products

Usually primer pairs which are gene-specific or optimized to anneal in the
vector sequence, are used to amplify any cDNA or express sequence tags (EST)
from an available library. The amplicons are then deposited (printed) into the
slide surface at pre-defined positions. Good quality PCR products are to be
used for microarray construction and hence stringent QC procedures are
applied, including analysis of each amplification product by agarose gel or
capillary electrophoresis, to control amplification efficiency and quality of its
products and to exclude production pipeline samples presenting a poor
amplification or non specific bands and smears. The length of the PCR
products used to generate microarrays varies generally between 300 and 800
nucleotides.

The main advantages of this approach is that it is not necessary to know the
full sequence of the starting DNA clone (although it is preferable!) and the
signals obtained are generally strong and hence the array is easier to implement
and quality of the data generated is higher. The only disadvantage is
denaturation step has to be introduced in to the procedure, due to the
presence of a double stranded target on the microarray and other cross-
hybridization problems are possible.

2. Printing with Oligonucleotides

For this strategy to be practiced 50 to 70mer oligonucleotides are generally
used. The major benefits here with respect to cDNA probes are: (i) higher
specificity, since the sequences are optimised to minimize cross-hybridization,
(ii) the possibility to design several oligonucleotides for different parts of
the same gene, and monitor the specificity of hybridization and detect
alternative splicing products (different alleles) and (iii) the possibility to
normalize the hybridization conditions by construction of oligonucleotide
sets having similar melting-temperature (Tm).

In both the cases decribed above, the second step in microarray fabrication
involves ordered deposition of the probes on the surface (spotting). The
purified DNA probes (PCR fragment or oligonucleotides) are spotted on a
modified glass slide in an ordered grid, by means of array spotters and robotic
instruments that allow for precise deposition of few nanoliters of DNA
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solution, with accuracy and reproducabiling leading to replicate uniformity.
Two main spotting technologies are currently employed. They are ‘‘the contact
deposition’’ and the noncontact, deposition. The ‘‘contact deposition’’ uses
particular pins that aspirate by capillarity a small volume of pre-made target
solutions and deposit a drop of it onto the slide surface on physical contact.
The ‘‘noncontact deposition’’ distributes sub-nanoliters of the target solutions
to specified locations. Two ‘‘noncontact deposition’’ technologies are mainly
used: (i) the piezoelectric technology, which uses electricity in order to modify
the morphology of a piezoelectric crystal that encircles a capillary containing
nucleic acid solutions, resulting in a squeezing on the capillary and delivery
jet onto the surface; (ii) the syringe-solenoid deposition, in which a positive
pressure, produced from a syringe and regulated from a solenoid valve, allows
the deposition of micro-volumes of the target solutions onto the slide, when
the valve is opened. A third option, recently introduced, uses an adaptation of
an ink jet printing technology to deliver sub-nanoliter droplets of DNA
solution unto the glass surface.

All these approaches allow high-density spotting and are easy to implement
at low costs.

3. Printing Microarrays by in situ Probe Synthesis

DNA targets are synthesized in situ, by a modified photo-lithography
procedure, one base at a time for several cycles, until the desired sequence is
obtained in each element of the array. The technology for semiconductor
production are combined with photolithography in the Affymetrix� method,
which uses ultraviolet light and solid-phase chemical synthesis for solid-state
polynucleotide synthesis. In photo-lithography, the glass slide is modified with
a surface providing the reactive amine groups modified with a photo-protecting
group to control their reactivity. The amine group is activated by ultraviolet
light. A predefined mask (photo mask) is applied to select the sites that have to
be activated during each photo-activation step. In the de-protected regions,
modified phosphoramidite nucleotides can then be covalently bound. The cycle
of removing the photo-protecting group by UV-light and subsequently the
coupling step facilitates oligonucleotide synthesis.

The advantages of this approach are similar to those involving delivered
oligonucleotides. All the steps regarding sample production, handling and
storage are eliminated and the oligonucleotides are produced directly using
sequences from the databases. The use of ‘‘perfect match’’ vs ‘‘mismatch’’ probe
pairs is a unique concept introduced in this case. For each probe, perfectly
complementary to a target sequence (the ‘‘perfect match’’ probe; PM), an
associate probe that carries a single base mismatch in its 13th position is also
synthesized in the same array (the ‘‘mismatch’’ probe; MM). This system allows
the subtraction of the signals due to nonspecific cross-hybridization to the
‘‘MM’’ probe and provides a key information for signal specificity. Moreover,
the chip-to-chip variations are significantly reduced. This kind of chips contain
high number of targets (up to 400.000 oligonucleotide cells within 1.6 cm2).
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The main disadvantage of this approach is the short length of the in situ
synthesized oligonucleotides (less then 30 nts) and the high manufacturing costs,
although it might be the least expensive way to produce chips covering whole
mammalian genome.

B. TARGET PREPARATION AND LABELING PROCEDURES

The method to label a target depends on its molecular nature, and the
microarray technology implemented. Here we shall describe the labeling
method used for a DNA chip with an RNA as the target molecule, which is
used for gene expression profiling. Other target preparation protocols are
found in Refs. 3–4.

The purity and integrity of the RNA isolated from tissues or cell lines are
critical for microarray experiments. The most common method for total RNA
isolation involves organic extraction of RNA from homogenized sampleslike
guanidinium isothiocyanate or guanidinium hydrochloride. The RNA sample
should be devoid of carbohydrates, DNA, lipids and proteins, as the presence
of these contaminants may affect the performance of the sample in the
downstream procedures. Several commercially available methods and buffers,
are currently used. The RNA is significantly more labile than DNA because it
is readily susceptible to degradation by endogenous and contaminating
ribonucleases, which are stable and ubiquitous enzymes. To obtain a high
quality RNA and to maintain its integrity during the subsequent procedures,
several precautions are taken, which include: (i) processing the sample as soon
as possible, and (ii) avoiding RNase contamination using disposable gloves and
RNase-free glassware, plasticware, water and salt solutions, obtained by
autoclaving or treatment with DEPC. The purified RNA is stored at –70�C.

Total RNA or (polyAþ)RNA (mRNA) can be used for experiments. In the
latter case, a purification step is necessary, as mRNA is isolated from total
cellular RNA by affinity chromatography on oligo-dT immobilized to a solid
support. The amount of the purified RNA determined by its dual wavelength
absorbance at 260 nm and 280 nm and the quality checked by agarose gel or
capillary electrophoresis.

In most recent microarray experiments, multicolor fluorescence labelling
are used for simultaneous analysis of two or more samples in a single assay.
For this, total RNA or mRNA are labelled with fluorescent nucleotides by a
reverse transcription reaction. cyanines Cy3 and Cy5 are used for dual color
analysis.

Various RNA labelling strategies involving direct or indirect labelling exist.
Direct labelling is the most diffused method. The RNA template is converted
to fluorochrome-labeled first-strand cDNA by a reverse transcription reaction
(RT). Reverse transcriptase synthesizes cDNA using the RNA as a template, in
the presence of oligo (dT) primers that hybridize with the poly-A tail of the
mRNA, incorporating at the same time modified Cy3- or Cy5-conjugated
deoxy-nucleotide triphosphates. This method is fast and simple. The main
drawback is that cyanine-labeled nucleotides are not efficiently incorporated in
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the polymerizing step, due to steric hindrance caused by the large fluorophores.
After this step, the template is removed by RnaseH1 digestion or NaOH
treatment and the free nucleotides are eliminated by gel filtration on dedicated
columns. Generally, direct DNA labeling does not produce long cDNA
molecules, and for this reason probes complementary to the nucleotide
sequence near the poly-A plus tail of the target are recommended. In the
indirect labelling, the 5-(3-amino-allyl)-2’-deoxynucleotide 5’-triphosphate
(aa-dNTP) modified nucleotides are used. They are incorporated with the
same efficiency of the unmodified nucleotides in the first-strand cDNA
synthesis. After removal of the RNA template and purification of the amine-
modified cDNA, the coupling reactions with N-hydroxysuccinimide-esters
(NHS-esters) of Cy3 or Cy5 are performed to produce uniformly labelled
probes. The labelled cDNA requires a re-purification step to remove the
unincorporated, free Cy-Dye.

When the amount of the RNA sample is low (for example in tissues from
biopsies), an RNA amplification step is needed, that involves labeling through
a linear RNA amplification method. For this, the mRNA population is
converted into a double-strand cDNA containing a strong promoter sequence
from viral RNA polymerases, such as T3 or T7 phage promoters, by using an
oligo(dT) primer including a 5’ extension including the viral promoter for first
strand cDNA synthesis, followed by complementary cDNA strand synthesis
with DNA polymerases. Several RNA copies are synthesized form each
template of double-strand cDNA in presence of Cy-Dye ribonucleotides and
appropriate DNA-dependent RNA polymerases. If biotinylated ribonucleo-
tides are used in the transcription amplifications to generate biotinylated
cRNA, a post-labelling reaction is performed following target hybridization to
the array and the washing steps, by staining with streptavidin-phycoerythrin
conjugates (see http://www.affymetrix.com/technology/ge_analysis/index.affx
for more details) or CyDye streptavidin conjugates (see: http://www4.
amershambiosciences.com/aptrix/upp01077.nsf/Content/codelink_bioarray_
system). Both technologies use short oligonucleotide probe microarrays
(25mer- and 30mer-long, respectively). Fragmentation of cRNA before
hybridization is necessary to avoid secondary structure of RNA interfering
with the target-probe annealing.

A very recent labeling method instead of fluorescence, uses Resonance
Light Scattering (RLS) technologies, based on the optical light scattering
properties of nano-sized metal colloidal particles. In this technique, biotiny-
lated nucleotides are used in the first-strand cDNA synthesis and the coupling
steps are performed with anti-biotin- coated gold or silver particles. The main
advantages of this technology are the high sensitivity and the absence of signal
due to photochemical bleaching.

C. HYBRIDIZATION AND WASHING

In the hybridization step, the ability of labeled targets to bind immobilized
probes are tested. Referring again to the cases where DNA microarrays are
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used, the labeled targets are first annealed with their complementary probes
immobilized onto the slide surface. Subsequently, serial steps of post-
hybridization washing are carried out in order to remove unbound materials,
to improve the signal-to-noise ratio and to minimize cross-hybridization
between labeled targets and probes. Hybridization and washing steps are
performed in the dark, to avoid signal loss due to photo-bleaching of the
fluorescent dyes. Several parameters are taken into account in order to obtain
successful results, linked to the two main experimental variables: temperature
of hybridization and composition of the hybridization solution. The base
composition of the nucleic acids involved in the annealing reaction have a large
effect on duplex yield of the solvents normally used for hybridization, due to
the different stability of A : T vs G :C base pairs. Short oligonucleotides have
extreme biases in composition and hence, correspondingly show large
differences in melting temperature (Tm, the temperature at which 50% of the
target is denatured). As a rule-of-thumb, the addition of an A : T base pair
increases the Tm by 2�C, compared with 4�C for a G :C pair. This difference is
minimized by adding TMAC (tetra-methyl-ammonium chloride) to the
hybridization mix. The optimum range of hybridization temperature in
aqueous solutions is about 65–75�C. The degradation of the target due to
high hybridization temperature is minimized by the use of 50% formamide,
that allows the reduction of the hybridization temperature of about 25�C,
thereby protecting the targets from degradation. Usually, in the presence of
formamide, hybridization is carried out at 42�C. The other parameters to be
considered in this process are the pH, (neutral value promotes hydrogen
bonding between base-pairs), and salt concentration (improves the hybridiza-
tion efficiency by shielding negative phosphate groups of the nucleic acid and
minimizing electrostatic repulsion). The post-hybridization washings eliminate
unbound labeled target. Usually these washes are performed in SSC/SDS
solutions, progressively diminishing the concentration of salt. To improve the
reproducibility of the microarray analysis by reducing the variability due to
hybridization and washing steps, automatic hybridization-washing stations are
developed, but their high cost is still a deterrent for their widespread diffusion.
After the slides are washed, they are dried by blowing nitrogen gas or by low
speed centrifugation at and quickly passed to the subsequent processing steps.

D. TARGET DETECTION

In microarray analysis detection is the step in which the signal for each spot is
revealed and quantified, giving an image that is like photography of the
microarray. In the subsement paragraphs we shall provide basic information
on the currently used fluorescence detection systems for microarrays and the
characteristics of relative detection devices.

1. Fluorescent Dyes

Fluorescence is the light emission process in which a fluorophore, a molecule
able to adsorb light, after reaching an excited state releases light (photons) with
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less energy and, consequently, a longer wavelength than the exciting light
(Stokes shift; Figure 23.2). in fluorophores the distance between excitation and
emission wavelengths are greater and more suitable for microarray application.
Part of the excitation energy is emitted in processes different than fluorescence
(nonproductive fates), whose values have to be evaluated to choose the optimal
fluorescent label and detection device. When a moderate excitation light is
applied, a single fluorescent molecule can be cyclically excited and detected,
increasing consistently the sensitivity of the assay. On the other hand, the
signal emitted is reduced when the exciting light applied is too intense, a
phenomenon causing permanent loss of fluorescence signal (photo-bleaching).

Several fluorescent labeling dyes are commercially available (Alexa series,
Oregon green, Rhodamine and Cyanine dyes, etc.). They are all characterized
by the presence of double bonds on every other carbon atom of a cyclic
structure, containing the electron that once on excitation emitted fluorescent
light. The cyanine dyes are the most widely used at the moment. They are
bright, easily added to the nucleotides, stable to photo-bleaching and with a
Stokes shift value of about 20 nm. The cyanine dyes used in microarray
analysis are Cy3 (absorption at 550 nm and emission at 570 nm) and Cy5
(absorption at 649 nm and emission at 670 nm) that are already available as
phosphoramidite derivatives.

The use of fluorescence in microarray technology has several advantages.
Indeed, fluorescence significantly increases the sensitivity and the speed of the
assay and enables the collection of very large amounts of data in automated
fashion. Moreover, the fluorescent dyes are not too toxic stable and much safer
than radioactivity. Their major advantage, however, is the spatial resolution
they provide, as this allows correct assessment of both weak and strong signals
even when they are emitted by elements located adjacent to one another on the
array grid, as any signal spreading effect is avoided. This property allows the
construction of high-density arrays. Two or more fluorescent dyes are often
used in conjunction in microarray experiments, to increase the reliability of the
comparative analyses and to permit the analysis of several differently labelled
samples on the same microarray.

FIGURE 23.2 Stokes shift diagram depicting optimal relationships between excitation
and fluorescence light of a fluorophore suitable for microarray applications.
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2. The Microarray Reading Devices

The two main detection systems currently used for microarray reading are the
scanners and the imagers. The microarray scanners acquire the entire image by
moving the array or the optic system back and forth in small increments
(10 mm). The imagers are able to collect data from larger areas (1 cm2) without
any movement. Both devices have to include functions necessary to detect a
microarray image, in particular: (i) a source of excitation light with a precisely
defined wavelength, provided by a laser or a lamp, requires the addition of
filters to provide beams of selected wavelengths; (ii) a system of optic lens
collecting the fluorescent light in three dimensions, the numerical aperture, and
a parameter defining the collection angle, e.g. collection efficiency of 50%; a
lens with a numerical aperture of 1 collects the light over an entire hemisphere,
(iii) the spatial addressing, that refers to fluorescence detection from a defined
area of the glass slide, usually divided in pixels, smaller than the element size to
reveal artifacts due to spotting problems or to dust on the slide; (iv) the ability
to discriminate between excitation and emission light, the last being of much
lower intensity than the first one and (v) the ability to convert the low level
light into electrical signals.

The microarray detection devices, scanners and imagers, are sophisticated
instruments that require components specifically designed to achieve the
specifications listed above. Confocal scanners are widely used as microarray
detection devices. Differing from a normal scanner, these systems have two
focal points configured to limit the field of view in three dimensions, driving
data acquisition one pixel at a time. In the basic design, a laser light is directed
to an excitation filter allowing passage only to light of the wavelength of
interest, usually corresponding to the excitation peak of the dye. The laser light
is monochromatic (single color), coherent (the photons in the beam have the
same phase) and collimated (highly parallel), implying that no other optic
systems are required to get a beam that is really intense and precisely reflected.
The device has to include multiple gas or solid-phase lasers, one for each
wavelength required. The emitted light is reflected through the microscope
objective by a beam-splitter, an optic filter that separates out the returning
excitation beam. The main function of the splitter is to reject most of the
reflected laser light (4% of the input), while allowing passage to most of the
fluorescent light. The excitation of the fluorescent dye molecules results in
the emission of fluorescent light in several directions, collected by the objective.
The return beam goes to the beam-splitter, which in turns transmits only the
fluorescence beam to a mirror directing it to the detector. This emission filter
allows the passage of a selected narrow band of fluorescence, while rejecting
the reflected laser light. At this point, the fluorescence beam is directed to the
detector lens, that in turns focuses it on a detector device able to convert the
beam into electrical signals. The most common detectors are photo-multiplier
tube (PTM), which transforms the photons to an amplified electrical signal.
The fluorescence beam is directed onto a light-sensitive surface of the PTM, the
photo-cathode, that then releases electrons. These will jump onto a charged
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electrode, inducing the release of a higher number of electrons (up to about
1 million-fold amplification) and are finally collected on the anode there by
sending out of the PTM the electrical current that is easily recorded and
measured. The recorded signal is converted to digital data, and stored as image
(TIFF) files that are further computed.

The microarray imagers, on the other hand, are detection instruments able
to capture images from a larger portion of the microarray in a single detection
step. Conceptually, an imager is organized as a scanner but several technical
details are different. The imagers have a white light source (polychromatic) that
is directed to the optic filters to obtain the monochromatic beam, necessary to
excite the fluorescent dye. The fluorescent beam is directed to a beam-splitter
to remove the reflected light. A light sensor also known as the detector, located
in the camera, captures the fluorescence light. The detector consists of a
checkerboard matrix of light sensitive pixels, like for example in the charged-
coupled devices (CCDs) in which a pixel is coupled to each photo-sensor
allowing the charge accumulation of the photo-sensor to be transferred and
amplified across the matrix. The sensing region, defining the CCD-chip,
contains around 1,000 pixels in each direction. The smaller the pixels the higher
is the image resolution. Only smaller images are captured each time as less
charge is stored in the device. The amplified electrical signal is recorded,
measured and transformed to digital data, as is the case with scanners.

E. ANALYSIS OF DNA MICROARRAY DATA

The raw data, generally fluorescence measurements extracted from the TIFF-
format images generated by the scanning devices, require first scaling and
normalization, to eliminate the systematic sources of variation between
samples as well as the different intrinsic fluorescence labeling or hybridization
efficiency among the two dyes analyzed in parallel, the unequal spreading of
the hybridization mix on the array surface, and the variations in image analysis
(laser power fluctuations, photo-multiplier gain adjustments, etc.). Indeed, raw
analysis of data relative to replicate experiments reveal a high variability
present, when comparing the same RNA labeled with two different dyes on a
single array (self–self differential hybridization). As a consequence, at least
three technical replicates (i.e. three different hybridization reactions for each
sample-control pair) are required to allow an efficient analysis of variance and
correction of systematic errors (biases) and variability due to stochastic events
(variation).

The data analysis process, starting from normalization to eliminate casual
sources of variability within and among arrays, proceeds through statistical
analysis aiming at identifying those genes whose expression is significantly
different in the two (or more) investigated samples. The so identified significant
genes are then subjected to further bio-informatic analysis, to group them
according to their expression patterns, functional role, etc., or to test their
predictive value with respect to biological hypotheses [6].
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We shall describe here some of the approaches used for computation of
data from ‘‘two-dye’’ comparative gene expression profiling analyses carried
out with cDNA arrays.

The initial step proceeds through ‘‘within-array normalization,’’ aimed
at correcting biases within the data sets due to intrinsic dye fluorescence,
intensity-dependent or local (sub-array) variation. The more immediate
and simplest way to address the problem is the total intensity normalization,
which is based on two postulates: (i) the slide containing a large number
of gene probes, is likely to show the same activity in both test and
reference samples, (ii) the total mass is same for the two samples that are
hybridized competitively to the array, so that the total fluorescence is
same among them, even if some RNA species are over-represented in one
sample and vice versa in the other. As a result, the data are adjusted so
that either the sum, the mean or the median of the measured intensities are
equal for the two fluorescence channel readings. A variation of this
normalization step is to scale all data according to reference genes whose
expression levels are assumed to be constant, based on biological and
functional considerations (such as the so called ‘‘housekeeping’’ genes, for
example). Probes for these reference genes are spotted on various regions of the
array to correct sub-array variation and used as an alternative means to
normalize data from replicate experiments. In any case, this type of scaling
does not correct intensity-dependent variation, as standard deviation data
often varies with the signal intensity because casual fluctuation affects signal
detection more incisively at the lower end of the fluorescence scale than at its
higher end.

To adjust this source of variation, a locally weighted linear regression
(‘‘lowess’’: locally weighted scatter-plot smoothing, [7], that computes an
intensity-dependent normalization factor for each gene, should be carried out
[8]). In this way, however, local differences within the array (sub-array
variation) are not addressed. The differences due to spatial location of
the spots are in regard to those slides on which different arrays are spotted
through different pins (the so-called ‘‘print tip groups,’’ ‘‘pen groups’’ or
‘‘sub-grids’’). The variance is due to slight differences in the geometry of pins,
deformation of the pins after a long activity, or to unequal distribution of
the hybridization efficiency over the slide surface. The same variability is
observed among replicate slides. A possible solution is the execution of
different ‘‘lowess’’ analyses for the various sub-grids, and a scaling of the
obtained data similar to across-array normalization (see below).

A particular type of ‘‘within-array’’ analysis is the so called ‘‘self–self ’’
hybridization [9], in which two dyes are used to label the same RNA species, so
that the fluorescence values acquired by the scanner for each gene is supposed
to be the same for the two channels. This approach allows the identification of
the variability which depends only on systematic biases or on stochastic
processes. Some Authors suggest the performance of some ‘‘self–self
hybridization’’ for each experiment, to establish an error model used to
correct data derived from experimental measurements.
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The second step is the ‘‘across-array normalization.’’ The simplest way to
compare replicate arrays is to scale their intensities according to a total
fluorescence method, computing the standard deviation of replicates
measurement for each gene, and excluding from the analysis those genes
whose variance is too high. A complex approach to correct stochastic
sources of variability is the ‘‘variance regularization’’ (10], which implies
the adjustment of data relative to the different slides (or sub-grids) in order
to center the fold-change distribution around zero (normalization step), and
then multiplication of each element for the respective scaling factor, computed
for each array by dividing its variance for the geometric mean of all the
variances.

A different type of across-arrays data comparison is the ‘‘flip-dye’’ analysis,
based on the inversion of the dyes used for labeling the test and reference
samples in at least one replicate [dye swap, 11]. The comparison of at least two
dye-swapped hybridization reactions reveal the presence of differences in
fluorescence values which are not due to effective changes in RNA levels but
instead to casual fluctuations; the genes for which the ratio between the fold-
changes of the swapped arrays is far from one and should be excluded from
further analyses. Therefore, in order to eliminate as many variability sources as
possible, correct planning of a gene expression profiling test with microarrays
should include not only replicate hybridizations, but also dye swapping. It has
been even suggested that each sample should be subjected to balanced
hybridization, carrying out as many labeling with Cy3 or Cy5.

The last step of this initial data analysis phase is the selection of significant
genes whose expressions are different in the two compared samples. The first
and simplest method used is based on computing fold-change differences for
each gene, by averaging replicate results and choosing the first the cut-off value
that defines differentially expressed genes. Generally, a gene is considered
differentially expressed in two samples when the differences in mRNA
detection among them by microarray hybridization are at least two-fold. If
the data relative to many replicates are consistent, a lower cut-off (down to
�1.5-fold change) is acceptable. However, a cut-off value has to be selected
based on statistical significance, and for this reason a great number of
computational approaches are introduced to compute the level of confidence
associated with the selection of truly differentially expressed genes. The most
used, among those methods, go from the standard t-test [12], to a Significance
Analysis of Microarrays method [SAM, 13], to analysis of variance
[ANOVA, 14] or application of Bayesian mathematics [15], to the ‘‘maximum
likelihood’’ method [16].

The t-test analysis computes for each gene the probability that the
difference between the mean fluorescence intensities of the test and reference
samples is falsely called significant (p-value), by theoretical t-distribution or
permutation test.

SAM involves a modified t-test and computes a ‘‘False Discovery Rate’’
(FDR, representing the expected incidence of false positives) for each chosen
differential expression (significance) cut-off.
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ANOVA takes in to account the different sources of variation, dependent
on the arrays themselves. The different slides are spotted and hybridized under
slightly different conditions. In the case of dyes, -one dye is often brighter than
the other, with regard to samples, their concentrations can be slightly different,
in the case of genes, individual probes can show different efficiency of
hybridization and with regard to the microarray elements a complete control
over the amount of DNA immobilized on the slide is not possible. Numerous
other mathematical methods are proposed, but their complete listing is beyond
the scope of this review.

A different algorithm for data normalization and selection of significantly
expressed genes is used for the Affymetrix�-type oligonucleotide arrays, in
which each gene is represented by a probe set of 16–20 perfect match (PM)
oligonucleotides, each of them paired with a single-based mutant (MM) to
allow computing the quote of non specific annealing reaction (see above). The
Affymetrix� algorithm first discriminates the genes effectively expressed from
those whose levels are similar to MM, by executing a t-test for each probe set.
Then the fluorescence value relative to the probe set is computed by averaging
the intensities of the perfect matches subtracted of mismatch, and finally, a
t-test is performed to compare the test and reference samples, hybridized to
distinct biochips [http://www.affymetrix.com, 17].

The list of positive, differentially expressed genes obtained by either one of
the above mentioned procedures are then subjected to other investigations to
gather further insights on its biological meaning. A first analysis can be based
on gene ‘‘clustering,’’ where in grouping of the genes according to similarities
of their expression patterns in each sample is done. A basic principle of
genome-wide expression analysis is that genes linked by similar expression
profiles respond in a similar fashion to the environmental and internal signals
reflecting the functional state of the cell, while the products they encode are
likely to act in concert toward achieving a cellular phenotype. According to this
view, data clustering is the first step for interpretation of microarray data
toward identification of the biologically relevant processes they underscore.
Different clustering algorithms have been proposed, among which the most
used are: hierarchical clustering, K-means clustering, self-organizing maps,
supervised clustering and Best Score Clustering [BSC, 18].

Hierarchical clustering [19] consists in computing the distances between
each couple of genes of the studied list, thus constructing a distance matrix in
which the distances of each gene from all the others is reported; the smallest
distances computed will form the first cluster (composed by gene pairs).
Another distance matrix is then constructed, considering now groups of genes
(or ‘‘objects’’) instead of single genes, and the process of classification is
repeated until a single group or cluster remains. The similarity hierarchy so
computed can be represented likewise a phylogenetic tree, whose branch
length is proportional to the correlation between the elements connected
(expressed as Pearson’s score). Besides clustering genes according to their
expression pattern (gene clustering), samples can also be grouped according to
their gene expression profile (array/sample clustering). This clustering is
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effective in identifying the main groups of similar expression, but the hierarchic
tree may be too rigid to represent the combinatorial complexity of gene
expression data. Moreover, this method yields a large number of clusters in the
tree-like structure, making it difficult to link the expression patterns to
biological processes.

K-means clustering [19] is based on the assumption that a certain number
of classes must be identified in the data set. The genes are first randomly
assigned to these classes, and then rearranged in the clusters through successive
steps, involving computation of the distance of each gene from the mean of
each of the selected groups and shuffling it to the nearest class. This approach
is used when a Priori hypothesis concerning the number of expected clusters is
formulated in advance.

Self-organizing maps [20] are also based on the establishment of a certain
number of nodes in a k-dimensional gene expression diagram followed by
iterative mapping of the nodes in the space according to their distance from
points corresponding to the gene expression values determined experimentally.
The advantages of this method are the flexible structure of the clusters and
their easy visualization and interpretation. The spatial representation of
clusters better reflects the multiple distinct ways in which gene expression
patterns can relate to each other.

Despite the many approaches proposed, one is still far from linking clusters
to biologically relevant groups, as sufficient information about the biological
role of the genes and the classes they group in are still missing. To address this
problem, supervised clustering methods [21] are proposed, in which genes and
other notions of interest are associated with labels that provide information
about a pre-existing classification. The information used to drive the analysis
may include knowledge of gene function or regulation, disease subtype or
tissue origin of a cell type. The methods comprise a training phase (supervised
learning), in which the expression profiles associated with each class are
defined by using a set of informative genes, and a test phase, in which new
genes are classified according to their similarity to the pre-defined classes.

More complex approaches to this problem involve the use of artificial
neural networks [22], Bayesian networks [23] and support vector machines [24],
which in turn are based on the same principle of supervised learning [25].

In parallel with the cluster analysis, a functional classification has to be
carried out in order to identify groups of co-expressed or co-regulated genes
that play a common or complementary role in the cellular homeostasis or in the
response to external stimuli. An international effort, the Gene Ontology (GO)
consortium [http://www.geneontology.org, 26], is currently under way to
establish precise and univocal definitions of the involvement of all genes from
various species in biological processes, including the molecular functions and
cellular localizations to their products. The GO dictionary is organized in a
hierarchical structure, in the form of Directed Acyclic Graphs (DAGs), in
which each term belongs to a parent class and has in turn a certain number of
child terms, going from the broader to the narrowest category [27]. The
resource is public and available online through different browsers: AmiGo
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(http://www.godatabase.org/cgi-bin/go.cgi), MGI (http://www.informatics.
jax.org/userdocs/GO_help.shtml), QuickGo (http://www.ebi.ac.uk/ego/). Some
data bases of GO annotations (i.e. matching single genes to the GO terms) have
been compiled and are periodically updated (http://www.geneontology.org),
while instruments are introduced to evaluate the statistical significance of the
number of genes belonging to a given GO functional class identified in a micro-
array experiment [OntoExpress, http://vortex.cs.wayne.edu/Projects.html, 28].
Although the simple number of genes can be irrelevant, for activation of a
biological process, the aggregation of many elements in a functional or spatial
group may be an useful tool to drive further research about the biological
meaning of the observed gene expression patterns.

In conclusion, microarray data analysis is a complex process, due to either
the very large amount of information yielded by each single experiment or the
high frequency of systematic and stochastic errors. Any of the different
normalization and transformation methods described here can substantially
modify a DNA microarray data set, so that a strenuous work of optimization
and standardization of all steps of data gathering and analysis are required to
gain the highest reproducibility and to allow direct comparison of data
generated from multiple microarray analyses, especially when it is from
different laboratories. Furthermore, for functional data analysis harmoniza-
tion and integration of available databases [29] are required. These are the
challenges that allow a capillary diffusion of this technology and the fulfillment
of the expectations raised by its potentials.

III. APPLICATIONS OF THE MICROARRAY TECHNOLOGY FOR
ASSESSMENT OF GENOME ACTIVITY IN NORMAL AND

PATHOLOGIC CELLS AND TISSUES

The DNA microarray technology has several applications. In the beginning it
was applied for gene expression monitoring and then for mutation detection,
mapping and evolutionary studies. Some of these aspects are discussed in this
section.

Gene expression analysis through DNA microarrays is a powerful means to
study the global profile of gene activity of any cell type or tissue, allowing
many applications, to include molecular profiling of different tissues or stages
of embryonic development, diseases classification according to gene expression
signatures of pathologic specimens, identification of transcriptional modifica-
tions induced by drugs (pharmaco-genomics) and dynamic description of gene
expression changes triggered by a particular stimulus in the cell, through single
determinations or time-course analyses.

Sequencing of the entire genome of various species (Yeast, C. elegans,
A. thaliana, D. Melanogaster, the house mouse and H. Sapiens) paved the way
for a dynamic analysis of the genetic material of each cell type in the various
differentiation and functional states (post-genomic or post-sequencing studies).
Once all the genes present in the cells are identified the scientific community

A Combinatorial Approach to Gene Expression Analysis: DNA Microarrays 557

proofreader
ACTIVITY

proofreader
AQ7



File: {Books}4463-Miertus/3d/4463-Miertus-Ch-23.3d
Creator: abdul/cipl-u1-3b2-8 Date/Time: 24.11.2004/2:07pm Page: 558/566

needs to verify which of them is effectively activated in each given cell type.
This leads to a functional genomic classification of all the tissues and
organisms in all stages of differentiation and functional activation; each of
these conditions are univocally defined by a specific combination of activated
and/or repressed genes. DNA microarrays nowadays represent the analytical
technology that best fulfill this need, and for this reason is currently applied at
an increasing rate. This involves the concept that massive accumulation of gene
expression data would occur quite rapidly and all this needs to be made rapidly
and effectively available to all laboratories throughout the world. To this aim,
publicly available gene expression data banks are organized, including Gene
Expression Omnibus [www.ncbi.nlm.nih.gov/geo, 30], the Stanford University
Microarray Database [genome-www5.stanford.edu/MicroArray/SMD/, 31]
and the EMBL database [www.ebi.ac.uk/arrayexpress/, 32]. Furthermore, to
make data from different laboratories directly and effectively comparable, a
common scheme to standardize microarray data presentation is being studied
(Minimum Information About Microarrays Experiments, [33–34].

These databases are constructed to include gene expression profiles not
only of normal tissues but also of pathologic ones, as virtually all diseases are
studied through DNA microarrays. The identification of pathologic gene
expression patterns are useful for different aims, including: (i) definition of
pathogenic alterations that underlie the disease, through the reconstruction of
cellular pathways hyper-activated, or impaired, in the pathologic tissues;
(ii) identification of gene expression patterns associated with the pathology, to
be used for diagnostic applications; (iii) extraction of expression profiles useful
for the prognostic evaluation and (iv) identification of new therapeutic targets
through reconstruction of cellular pathways implicated in disease pathogenesis.
Particular attention is given to molecular classification of cancer, as early
diagnostic tools and more effective prognostic factors are actually required
for most forms of malignant neoplasia. The complexity and wideness of
microarray analysis provide an useful tool to investigate the heterogeneity of
neoplastic diseases. In fact, large scale gene expression analyses show that each
tumor has its own pattern of gene expression, which is different from that
of other tumors derived from the same histological type [35]. The observation
of specific expression profiles in many different tumors have suggested that
the gene activation pattern (the so-called molecular signature, or portrait) is the
result of a complex network of factors, including the genetic background of
the patient, the tissue of origin, the grade of de-differentiation of the tumor, the
clonal genetic alterations characterizing the neoplasia, the proliferation rate
and the different cellular types that form the tumor mass. Therefore, different
subsets of genes are identified in each tumor, reflecting the various components
of its genetic background. Some genes are common to virtually all tumors or
characterize the pathologic tissues from the normal counterparts. These genes
are generally involved in cell-cycle control, adhesion and motility, apoptosis
and angiogenesis [36–37]. On the other hand, supervised clustering methods
show that other genes identified by microarray analysis allow to distinguish
tumors according to their tissue of origin [38] or to discriminate the grade of
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differentiation of neoplasia derived from the same tissue. Some studies show
that gene expression analysis can even permit the distinction of functional
subclasses among histologically homogeneous tumor samples, with different
grade of malignancy and, therefore, quite different clinical outcome [39–41].
This is possible since the gene expression patterns reflect some biological
properties of the tumor, that influence its ability to infiltrate the surrounding
tissues, to give rise to metastasis [42–43] and to respond to therapy [44].

IV. APPLICATION OF MICROARRAY-BASED GENE EXPRESSION
PROFILING ANALYSIS TO THE CHARACTERIZATION OF THE
HORMONE-RESPONSIVE PHENOTYPE OF BREAST CANCER

Breast cancer is the most frequent malignant neoplasm in women, and is the
best example of hormone-dependent cancer, defining in this way a tumor that
needs a hormonal stimulus to grow and expand. Estrogens are the female
sexual hormones and represent the main endogenous factor promoting breast
cancer cells proliferation [45]. To increase our knowledge in the biological
pathways involved in estrogen-dependent growth of breast cancer cells, gene
expression analysis with cDNA microarrays was carried out on a hormone-
dependent breast cancer cell line (ZR-75.1) before and after stimulation with a
mitogenic dose of the natural estrogen 17b-estradiol. Time-course analysis was
carried out in hormone-stimulated cells to provide a kinetic view of the gene
responses to the hormone throughout a whole mitotic cycle (32 hrs in these
cells). mRNA extracted from treated cells was used to synthesize cDNA labeled
with the fluorescent dye Cy5, that was then mixed with an equal amount of a
common reference target consisting of Cy3-labelled cDNA extracted from
hormone-deprived cultures and hybridized to a glass array including 9,182
cDNA elements, representing 8,372 randomly selected unique gene/ESTs
clusters. Three independent hybridization assays were performed for each
sample pair and dye swapping (see above) was included in the protocol. 6,080
genes were selected as informative, or expressed in this cell line at detectable
levels, by SAM statistics [13]; among these genes, 344 showed significant
changes in activity in estrogen-treated cells [46–47]. We grouped estrogen-
responsive genes through an unsupervised hierarchical clustering algorithm
according to similarities in their inhibition or activation profiles in hormone
stimulated vs control cells. Eight main clusters summarize the main patterns of
gene expression changes detectable in estrogen growth-stimulated breast cancer
cells (Figure 23.3). The first three clusters (1–3) group all down-regulated
genes, with different kinetics of decrease in mRNA expression: significant
down regulation occurring already 1 to 4 hrs into estrogen stimulation for the
genes belonging to cluster 1, after 6 to 8 hrs for those of cluster 2 or after
�12 hrs for genes of cluster 3. Clusters 4 to 6, instead, comprise activated genes
whose transient expression patterns appear to be linked to cell cycle phasing,
while the last two (clusters 7 and 8) include genes showing persistent activation
by the hormone for up to 32 hrs, with RNAs starting to increase within the first
1 to 6 hrs of stimulation (cluster 7) or only after 8hrs (cluster 8).
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A functional classification of these genes according to Gene Ontology
reveals that the cell cycle gene clusters (clusters 4, 5 and 6) comprise some
important genes involved in cell cycle regulation (as c-fos, c-jun, c-myc, cyclin
D1), while clusters 7 and 8 encompass a larger number of genes, with a general
activation of some metabolic pathways, including glycolysis, nucleotide and
cholesterol biosynthesis, revealing a clear activation of anabolic processes in
these time windows.

This set of estrogen-regulated genes were then used to classify both breast
cancer cell lines and specimens, whose expression data were publicly available
in on-line databases (the NCI60 gene expression database for the molecular
pharmacology of cancer [http://genome-www.stanford.edu/nci60/] and the
Stanford University ‘‘Molecular Portraits of Human Breast Tumours’’ [48]

FIGURE 23.3 Example of the gene regulation patterns induced by a biological stimulus

in responsive cells, in this case human breast cancer cells stimulated with a mitogenic
dose of estrogens.
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web site [http://genome-www.stanford.edu/breast_cancer/molecularportraits/],
and the possibility to identify different subclasses with prognostic significance
in an apparently homogeneous population of tumors was tested. A subset of 49
genes was able to distinguish between estrogen receptor (ER) positive
and negative breast cancer cell lines or tumor specimens, thus confirming
the predictive value of these genes [Figure 23.4 and Refs. 49–50].

FIGURE 23.4 Clustering of breast cancer specimen according to gene expression
profiling of a defined set of estrogen-responsive genes. Cluster analysis of 62 breast
tumor surgical specimens and 3 normal mammary gland biopsies based on expression of

a subset of 27 estrogen responsive genes identified in BC cell lines and 4 molecular
markers of ESR1 (ER K) positive breast tumors. Expression data were from Perou et al.
[48]; sample denomination has been maintained the same as in the original study. Colors

highlights the molecular typing of the breast cancer samples, e.g. luminal epithelial/
ERþ (LE, red), basal-like (BL, dark blue), cErb-B2-overexpression (ERBB2, green),
normal-like (NL, light brown) and undetermined (black). The three normal breast tissue
samples are also marked in light brown. Each column of the expression matrix

represents the tissue sample indicated at the top and each row refer to a gene, colors of
the matrix elements represent mRNA expression levels relative to a common reference
sample (green for sample/reference ratios <1, red for ratios >1, black for ratios near 1

and gray for missing data). The top dendrogram represents hierarchical relationships
between samples; the terminal branches are colored to reflect the known molecular
nature of each tumor or normal tissue sample.
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This is fundamental for prognostic evaluation of these tumors, as ER
expression is among the main prognostic factors for breast cancer, and reflects
the disease responsiveness to hormonal therapy. These results confirm the
possibility to discriminate between biologically different forms of cancers
through the study of gene expression signatures related to relevant
physiological or pathological stimuli.
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