353 research outputs found

    Anomalously light states in super-Yang-Mills Chern-Simons theory

    Get PDF
    Inspired by our previous finding that supersymmetric Yang-Mills-Chern-Simons (SYM-CS) theory dimensionally reduced to 1+1 dimensions possesses approximate Bogomol'nyi-Prasad-Sommerfield (BPS) states, we study the analogous phenomenon in the three-dimensional theory. Approximate BPS states in two dimensions have masses which are nearly independent of the Yang-Mills coupling and proportional to their average number of partons. These states are a reflection of the exactly massless BPS states of the underlying pure SYM theory. In three dimensions we find that this mechanism leads to anomalously light bound states. While the mass scale is still proportional to the average number of partons times the square of the CS coupling, the average number of partons in these bound states changes with the Yang-Mills coupling. Therefore, the masses of these states are not independent of the coupling. Our numerical calculations are done using supersymmetric discrete light-cone quantization (SDLCQ).Comment: 14 pages, 3 figures, LaTe

    DLCQ On a Twisted Torus

    Get PDF
    Recently it has been demonstrated by Dienes and Mafi, that the physics of toroidal compactified models of extra dimensions can depend on the shape angle of the torus. Toroidal compactification has also recently been used as a regulator for numerical solutions of supersymmetric fields theories in 2+1 dimensions. The question is; does the shape angle of the torus also affect the physics in this situation? Clearly a numerical solution should be independent of the shape of the space we compactify on. We show that within the context of standard DLCQ, that toroidal compactification is only allowed for a specific set of shape angles and for that set of shape angles the numerical solutions are unchanged.Comment: 8 page

    Parity Invariance and Effective Light-Front Hamiltonians

    Get PDF
    In the light-front form of field theory, boost invariance is a manifest symmetry. On the downside, parity and rotational invariance are not manifest, leaving the possibility that approximations or incorrect renormalization might lead to violations of these symmetries for physical observables. In this paper, it is discussed how one can turn this deficiency into an advantage and utilize parity violations (or the absence thereof) in practice for constraining effective light-front Hamiltonians. More precisely, we will identify observables that are both sensitive to parity violations and easily calculable numerically in a non-perturbative framework and we will use these observables to constrain the finite part of non-covariant counter-terms in effective light-front Hamiltonians.Comment: REVTEX, 9 page

    Towards Solving QCD - The Transverse Zero Modes in Light-Cone Quantization

    Get PDF
    We formulate QCD in (d+1) dimensions using Dirac's front form with periodic boundary conditions, that is, within Discretized Light-Cone Quantization. The formalism is worked out in detail for SU(2) pure glue theory in (2+1) dimensions which is approximated by restriction to the lowest {\it transverse} momentum gluons. The dimensionally-reduced theory turns out to be SU(2) gauge theory coupled to adjoint scalar matter in (1+1) dimensions. The scalar field is the remnant of the transverse gluon. This field has modes of both non-zero and zero {\it longitudinal} momentum. We categorize the types of zero modes that occur into three classes, dynamical, topological, and constrained, each well known in separate contexts. The equation for the constrained mode is explicitly worked out. The Gauss law is rather simply resolved to extract physical, namely color singlet states. The topological gauge mode is treated according to two alternative scenarios related to the In the one, a spectrum is found consistent with pure SU(2) gluons in (1+1) dimensions. In the other, the gauge mode excitations are estimated and their role in the spectrum with genuine Fock excitations is explored. A color singlet state is given which satisfies Gauss' law. Its invariant mass is estimated and discussed in the physical limit.Comment: LaTex document, 26 pages, one figure (obtainable by contacting authors). To appear in Physical. Review

    Improved results for N=(2,2) super Yang-Mills theory using supersymmetric discrete light-cone quantization

    Full text link
    We consider the (1+1)-dimensional N=(2,2){\cal N}=(2,2) super Yang--Mills theory which is obtained by dimensionally reducing N=1{\cal N}=1 super Yang--Mills theory in four dimension to two dimensions. We do our calculations in the large-NcN_c approximation using Supersymmetric Discrete Light Cone Quantization. The objective is to calculate quantities that might be investigated by researchers using other numerical methods. We present a precision study of the low-mass spectrum and the stress-energy correlator . We find that the mass gap of this theory closes as the numerical resolution goes to infinity and that the correlator in the intermediate rr region behaves like r4.75r^{-4.75}.Comment: 18 pages, 8 figure

    Comparing benefits from many possible computed tomography lung cancer screening programs: Extrapolating from the National Lung Screening Trial using comparative modeling

    Get PDF
    Background: The National Lung Screening Trial (NLST) demonstrated that in current and former smokers aged 55 to 74 years, with at least 30 pack-years of cigarette smoking history and who had quit smoking no more than 15 years ago, 3 annual computed tomography (CT) screens reduced lung cancer-specific mortality by 20% relative to 3 annual chest X-ray screens. We compared the benefits achievable with 576 lung cancer screening programs that varied CT screen number and frequency, ages of screening, and eligibility based on smoking. Methods and Findings: We used five independent microsimulation models with lung cancer natural history parameters previously calibrated to the NLST to simulate life histories of the US cohort born in 1950 under all 576 programs. 'Efficient' (within model) programs prevented the greatest number of lung cancer deaths, compared to no screening, for a given number of CT screens. Among 120 'consensus efficient' (identified as efficient across models) programs, the average starting age was 55 years, the stopping age was 80 or 85 years, the average minimum pack-years was 27, and the maximum years since quitting was 20. Among consensus efficient programs, 11% to 40% of the cohort was screened, and 153 to 846 lung cancer deaths were averted per 100,000 people. In all models, annual screening based on age and smoking eligibility in NLST was not efficient; continuing screening to age 80 or 85 years was more efficient. Conclusions: Consensus results from five models identified a set of efficient screening programs that include annual CT lung cancer screening using criteria like NLST eligibility but extended to older ages. Guidelines for screening should also consider harms of screening and individual patient characteristics

    Observation of the decay \psip\rar\kstark

    Full text link
    Using 14 million ψ(2S)\psi(2S) events collected with the BESII detector, branching fractions of \psip\rar\kstarkpm and \kstarknn are determined to be: \calB(\psip\rar\kstarkpm)=(2.9^{+1.3}_{-1.7}\pm0.4)\times 10^{-5} and \calB(\psip\rar\kstarknn)=(13.3^{+2.4}_{-2.7}\pm1.9)\times 10^{-5}. The results confirm the violation of the "12%" rule for these two decay channels with higher precision. A large isospin violation between the charged and neutral modes is observed.Comment: 5 pages, 3 figure

    Measurements of ψ(2S)\psi(2S) decays into Vector- Tensor final states

    Full text link
    Decays of the ψ(2S)\psi(2S) into vector plus tensor meson final states have been studied with 14 million ψ(2S)\psi(2S) events collected with the BESII detector. Branching fractions of \psi(2S) \rt \omega f_{2}(1270), ρa2(1320)\rho a_2(1320), K(892)0Kˉ2(1430)0+c.c.K^*(892)^0\bar{K}^*_2(1430)^0+c.c. and ϕf2(1525)\phi f_2^{\prime}(1525) are determined. They improve upon previous BESI results and confirm the violation of the "12%" rule for ψ(2S)\psi(2S) decays to VT channels with higher precision.Comment: 7 pages, 7 figures and 2 table

    Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV

    Get PDF
    The elliptic, v2v_2, triangular, v3v_3, and quadrangular, v4v_4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range η<0.8|\eta|<0.8 at different collision centralities and as a function of transverse momentum, pTp_{\rm T}, out to pT=20p_{\rm T}=20 GeV/cc. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for pT>8p_{\rm T}>8 GeV/cc. The small pTp_{\rm T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT=8p_{\rm T}=8 GeV/cc. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT=8p_{\rm T}=8 GeV/cc indicating that the particle type dependence persists out to high pTp_{\rm T}.Comment: 16 pages, 5 captioned figures, authors from page 11, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186

    Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}} = 2.76 TeV

    Get PDF
    The inclusive transverse momentum (pTp_{\rm T}) distributions of primary charged particles are measured in the pseudo-rapidity range η<0.8|\eta|<0.8 as a function of event centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}}=2.76 TeV with ALICE at the LHC. The data are presented in the pTp_{\rm T} range 0.15<pT<500.15<p_{\rm T}<50 GeV/cc for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor RAAR_{\rm{AA}} using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pTp_{\rm T} particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with RAA0.13R_{\rm{AA}}\approx0.13 at pT=6p_{\rm T}=6-7 GeV/cc. Above pT=7p_{\rm T}=7 GeV/cc, there is a significant rise in the nuclear modification factor, which reaches RAA0.4R_{\rm{AA}} \approx0.4 for pT>30p_{\rm T}>30 GeV/cc. In peripheral collisions (70-80%), the suppression is weaker with RAA0.7R_{\rm{AA}} \approx 0.7 almost independently of pTp_{\rm T}. The measured nuclear modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/284
    corecore