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Abstract

Background: The National Lung Screening Trial (NLST) demonstrated that in current and former smokers aged 55 to 74
years, with at least 30 pack-years of cigarette smoking history and who had quit smoking no more than 15 years ago, 3
annual computed tomography (CT) screens reduced lung cancer-specific mortality by 20% relative to 3 annual chest X-ray
screens. We compared the benefits achievable with 576 lung cancer screening programs that varied CT screen number and
frequency, ages of screening, and eligibility based on smoking.

Methods and Findings: We used five independent microsimulation models with lung cancer natural history parameters
previously calibrated to the NLST to simulate life histories of the US cohort born in 1950 under all 576 programs. ‘Efficient’
(within model) programs prevented the greatest number of lung cancer deaths, compared to no screening, for a given
number of CT screens. Among 120 ‘consensus efficient’ (identified as efficient across models) programs, the average starting
age was 55 years, the stopping age was 80 or 85 years, the average minimum pack-years was 27, and the maximum years
since quitting was 20. Among consensus efficient programs, 11% to 40% of the cohort was screened, and 153 to 846 lung
cancer deaths were averted per 100,000 people. In all models, annual screening based on age and smoking eligibility in
NLST was not efficient; continuing screening to age 80 or 85 years was more efficient.

Conclusions: Consensus results from five models identified a set of efficient screening programs that include annual CT lung
cancer screening using criteria like NLST eligibility but extended to older ages. Guidelines for screening should also consider
harms of screening and individual patient characteristics.
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Introduction

In the National Lung Screening Trial (NLST) [1], participants

aged 55–74 years randomized to three annual CT examinations

experienced a 20% reduction in lung cancer mortality at 6.5 years

of follow up (16% at 7.5 years) [2], compared to participants

randomized to receive three annual chest radiographs. The NLST

was designed to determine the efficacy of CT screening, but the

eligibility criteria and the number of screens offered were not

meant to represent a population screening strategy. Multiple

clinical guidelines, however, recommend lung cancer screening for

individuals meeting the NLST eligibility criteria [3,4]. Other

guidelines expanded recommendations for screening to individuals

who would have been ineligible for the NLST [5–7].

The NLST provided no direct evidence of further reductions in

lung cancer mortality from additional screens, or of potential

benefits of screening individuals with lighter smoking histories

(fewer than 30 pack-years of cigarette smoking or former smokers

who had quit more than 15 years prior) or individuals younger

than 55 or older than 74 years at the beginning of screening.

We extrapolated the findings of the NLST and compared

various screening programs if adopted in the US population. Five

modeling groups used independent approaches to combine

multiple sources of data to simulate the underlying natural history

of lung cancer and to estimate the benefit of alternative screening

programs. In a single cohort of people born in 1950, each model

estimated the benefits from 576 screening programs that varied

eligibility criteria and frequency of screens, and two reference

scenarios. We sought to rank programs according to a measure of

efficiency, to reduce the number of programs that would require

closer evaluation. The 1950 birth cohort was selected because they

reach age 63 (about mid-range of participants in the NLST) in

2013. When independent models reach consensus on the

characteristics of efficient screening programs, as reported here,

the results can better inform screening guidelines. As in prior

comparative modeling studies of important public health questions

[8,9] independent modeling groups collaborated, sharing inputs

and standardizing analyses to remove uncertainty due to

incongruent modeled populations, endpoints and metrics.

Methods

Models
The microsimulation models used were developed independently

by investigators at five institutions funded by the National Cancer

Institute’s Cancer Intervention and Surveillance Modeling Network

(CISNET, www.cisnet.cancer.gov) consortium through a peer-

reviewed, cooperative award (2010–2015) from the National

Institutes of Health: Erasmus MC in the Netherlands (Model E),

Fred Hutchinson Cancer Research Center (Model F), Massachusetts

General Hospital (Model M), Stanford University (Model S) and the

University of Michigan (Model U). Additional investigators (see also

Acknowledgments) collaborated to develop common inputs and

standardize analyses. The analyses and results described in this report

were part of a project to inform recommendations for lung cancer

screening issued by the US Preventive Services Task Force [10].

Each of the five models simulated the underlying natural history

of lung cancer, including dose-response modules that relate an

individual’s detailed, dynamic cigarette smoking history to lung

cancer risk (by histology and sex), and estimated (as an output) the

effect of early detection with CT screening on lung cancer survival

(Table 1, Part A in File S1, and Table S1 in File S1). Algorithms

for following up a positive screening test (defined in our analysis as

suspicious for lung cancer) were simulated with varying detail

(Table 1). Prior to this analysis, all models were populated with de-

identified trial participant histories and adjusted to match the trial

design (e.g., numbers of screens and screening modality). All

models were calibrated to reproduce multiple endpoints consistent

with NLST and the Prostate, Lung, Colorectal and Ovarian

(PLCO) [11] cancer screening trial [12]. Because the models

simulate the natural history of disease, they can predict outcomes

in years after the last year of observed follow up and in what-if

scenarios with hypothetical screening programs and participants.

Common Model Inputs
Publicly available data were used for this analysis. All models

simulated US men and women (all races) born in 1950. Detailed

smoking histories (including non-smokers) and non-lung-cancer

mortality risks were created as described below and in Part C in

File S1, and Figures S1 and S2 in File S1, and used by all models

as common inputs. Smoking histories and quit rates that were

previously estimated through 2000 [13] were updated to calendar

year 2009 for this analysis [14] and years past 2009 were

projected; similarly, tables of non-lung-cancer mortality rates

specific to smoking history (i.e., categories of current smokers had

increased risks relative to never smokers, with former smoker

mortality interpolated as a function of years since quitting) [15])

were updated to 2009 and projected past 2009. (The proportion of

the 1950 cohort that had accumulated the specified number of

pack-years by a given age is shown in Figure S4 in File S1.) In the

NLST and the PLCO trial, individuals had substantially lower

non-lung cancer mortality than the general population even after

adjusting for their smoking status. Our use of US population

other-cause mortality rates rather than the lower rates observed in

the NLST or PLCO was based on an assumption that the ‘‘healthy

volunteer’’ effect in the trials would not persist if screening for lung

cancer disseminated widely.

Standardized analyses
Each model was used to simulate men and women who were

born in 1950 from age 45 (calendar year 1995) to death or age 90,

under 576 programs and 2 reference scenarios (a no screening

scenario and a scenario with a maximum of 3 screens; Table 2).

Screening programs varied according to five criteria: age to start

screening (45, 50, 55, 60); age to stop screening (75, 80, 85); screen

frequency (every 1, 2, or 3 years); minimum number of pack-years

of cigarette exposure (10, 20, 30, 40); and (for former smokers)

maximum years since quitting (10, 15, 20, 25). We refer to

programs using shorthand for Periodicity (A, annual, B, biennial,

or T, triennial), Start Age - Stop Age - Minimum Pack-Years -

Maximum Years Since Quit. For example A55-75-30-15 repre-

sents starting screening at age 55 years and ending screening at age

75, for individuals with a minimum smoking history of 30 pack-

years, and a maximum years since quitting of 15 years. This

program, which we refer to as ‘NLST eligibility’ is similar to the

Benefits of Lung Cancer Screening Programs
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NLST design except that screening was not limited to 3 screenings

(a maximum of 21 screens are possible from ages 55 to 75).

As individuals age, their accumulated pack-years or years since

quitting may change. In this analysis, the models assessed eligibility

annually; to be screened at a specific age within the qualifying age

range, an individual also had to meet both the pack-years and the

years-since-quitting criteria. Thus lighter smokers may not begin

screening at the start age and former smokers may cease screening

prior to the stop age.

All simulations were performed assuming idealized, perfect

screening adherence for eligible individuals and smoking cessation

was assumed to be unaffected by screening results.

For the biennial and triennial programs, the frequency of

screening exams was changed while retaining each model’s natural

history parameters, which simulate the underlying progression of

disease.

Model M generated a second set of results that added operative

candidacy (i.e. healthy enough for curative surgery) as an eligibility

criteria for screening and reduced rates of operative candidacy in

older patients (Part A in File S1) [16].

Outcome Metrics
For each program, each model generated counts of screening

exams and lung cancer deaths avoided relative to no screening,

separately for males and females. All events are ‘per person in the

population’ rather than ‘per person screened’ because programs

defining eligibility based on smoking history may screen similar

proportions of the population but screen dissimilar people, even for

identical starting and stopping ages. Counts of screening exams

excluded follow-up and incidental CT exams. Counts of deaths

avoided per screening scenario were expressed as the proportion of

the (within-model) maximum possible deaths avoided from any of

the screening programs evaluated.

In this analysis, we sought to formally represent the tradeoffs

between maximizing the benefits (here, lung cancer deaths

avoided) accruing to a specific screening program while simulta-

neously minimizing the harms (here, the numbers of screening

exams required to avoid the lung cancer deaths). One way to

compare alternative programs that represent different tradeoffs is

to generate an ‘‘efficiency frontier’’. Each model generated

efficiency frontiers for each sex that connected the screening

programs that prevented the most deaths for each possible value of

the number of CT screens. (Note that our definition of efficiency is

not equivalent to identifying the lowest ratio of screens per death

avoided. As screening intensity increases, the number of screens

per death avoided will increase, but among programs with similar

numbers of screens, some [the most efficient] will prevent more

deaths.) For each model’s results, we generated a rank score (decile

of distance [17] from the model’s frontier) for each program not on

the frontier (Part B in File S1). Programs on or closest to the

frontier (first three deciles) as predicted by at least 3 models were

identified for males and females separately. Programs that were in

both male and female lists were defined as consensus programs.

For each consensus program, we combined counts per 100,000

persons from males and females and calculated the mean

predicted counts of lung cancer cases, lung cancer deaths, life

years, and screening CT exams performed. We calculated the

percent of the cohort receiving at least one screening exam and the

number of persons ever screened per lung cancer death avoided

(number needed to screen, NNS).

A secondary set of consensus programs for which the benefit

(i.e., the y axis) was measured as life years saved (with the x axis

remaining counts of CT screens) was also identified, using the

identical steps as above.

Results

Using eligibility criteria like those in NLST, neither 3 annual

screens (A62-64-30-15) nor 21 annual screens (A55-75-30-15)

appears on the frontier for any model (Figure 1 and Figure S7 in

File S1). There was variability among the models with respect to

the effects of the smoking criteria on distance from the frontier, but

consensus was clear regarding age: compared with A55-75-30-15,

all models placed A55-85-30-15 closer to (or on) the frontier,

indicating that continuing screening to older ages was more

efficient than stopping at age 75. Conversely, initiating screening

at younger ages (A45-75-30-15) was farther from the frontier (less

efficient). Less-frequent (B55-75-30-15) screens provided fewer

benefits, as did increasing the pack-year minimum (A55-75-40-15).

The most intensive annual program (A45-85-10-25) was the upper

right of the frontier for all models.

We identified 120 consensus programs. Of these, 119 had a

stopping age of 80 or 85 (Figure 2, Table S2 in File S1, and Figure

S8 in File S1). Across the 120 consensus programs, the average

start age (54.8 y) and the average minimum pack-years (27.1) were

close to the NLST criteria but the average maximum years since

quit was higher (19.9 y). For all models (Figure 3), the 120

consensus programs are close to the model’s own frontier.

Results from a selected subset of 41 (every third, sorted by

percent ever screened) consensus programs are provided in Table 3

Table 2. Screening programs evaluated.

Program Characteristic Values # of Combinations

Frequency of screening Annual, every 2 years, every 3 years 3

Age to begin screening 45, 50, 55, 60 4

Age to end screening 75, 80, 85 3

Minimum PY for screening 10, 20, 30, 40 4

Maximum YSQ for screening 10, 15, 20, 25 4

Total (including 2 reference programs) 578

PY, pack-years; YSQ, years since quitting. Reference programs: no screening and an approximation of the National Lung Screening Trial design (at age 62, 3 annual
screens for smokers with . = 30 PY, and , = 15 YSQ).
All screening programs simulated U.S. cohorts born in 1950. For individuals meeting the pack-year and (for former smokers) years since quitting cutoffs, the first screen
occurs at the beginning age and last screen occurs at the ending age. Programs are labeled as follows: Frequency (Annual, Biennial, Triennial) Age Start-Age Stop-
minimum PY- maximum YSQ. As an example, B55-85-20-15 corresponds to biennial screening starting at age 55, ending at age 85, subject to a minimum pack-year
history of 20 and a maximum years since quitting (for former smokers) of 15.
doi:10.1371/journal.pone.0099978.t002
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(mean and SD of results from the five models). Between 11% and

40% of the cohort was screened, requiring between 43,000 to over

920,000 CT screens per 100,000 persons (Table 3). The models

predicted an average of 3,719 lung cancer deaths per 100,000 in

the no screening scenario (SD 820.43; Figure S6 in File S1). Per

100,000 persons, the 41 consensus programs would avoid between

153 and 846 lung cancer deaths and save between 1,883 and 9,851

years of life, relative to no screening, and the mean predicted NNS

varied from 34.5 to 94.2.

Based on results from one model (M), reducing the proportions

of older individuals screened (due to ineligibility for surgical

resection) resulted in fewer CT screens and fewer lung cancer

deaths avoided (13.3% and 14.8%, respectively, across the

consensus programs), but programs that extended screening to

ages 80 and 85 remained on the efficiency frontier (Figure S9 in

File S1).

When the benefit of screening was measured as life years saved

rather than lung cancer deaths avoided, the second set of

consensus efficient programs had younger average start and stop

ages (49.5 y and 80.9 y, respectively) but similar average minimum

pack-years and maximum years since quit (Table S3 in File S1).

Discussion

Five independent models ranked 576 lung cancer screening

programs by weighing one metric of their potential benefits (lung

cancer deaths avoided) against one measure of harms or resource

use (counts of CT screening exams) in the US cohort born in 1950.

The models had been previously calibrated to multiple endpoints

in NLST,12 but heterogeneity in the underlying model structures

and assumptions yielded heterogeneous predictions for absolute

numbers of lung cancer deaths avoided when extrapolating

Figure 1. Systematic variation of reference screening program
A55-75-30-15. Vertical axis normalized so that 1.0 represents within-
model prediction of lung cancer deaths avoided with most intensive
screening program (A45-85-10-25); values not directly interpretable as a
hazard ratio. Compared to annual screening of individuals aged 55 to
74 with at least 30 pack-years of cigarette smoking and who quit with in
the last 15 years (reference, x) a program of continuing annual
screening to eligible individuals up to age 85 (+) was closer to the
efficiency frontier. Results from one model shown; see Figure S7 in File
S1 for results from all five models.
doi:10.1371/journal.pone.0099978.g001

Figure 2. Exemplar model showing consensus programs. Vertical axis normalized as in Figure 1. Consensus programs were the 120 (out of 576
evaluated, see Table 2) that five models ranked as most efficient. Only a single consenus strategy (the single orange +) had a stop age of 75. The
remaining consensus strategies continued screening of individuals meeting the smoking eligibility criteria to ages 80 (aqua) or 85 (purple). Annual
screening (triangles) provided greater benefits (i.e., averted more lung cancer deaths) than triennial (+) or biennial (squares). Results from one model
shown; see Figure S8 in File S1 for results from all five models.
doi:10.1371/journal.pone.0099978.g002
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Figure 3. Normalized plots from all models showing consensus programs. Shown are efficiency frontiers for all 5 models, with the 120
consensus programs marked. All vertical axes are normalized to within-model predictions, as in Figures 1 and 2.
doi:10.1371/journal.pone.0099978.g003
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beyond the trial data. A key finding of our analysis was that despite

differences in absolute benefits across the models, the ranking of

programs was consistent; while accounting for the heterogeneity in

model predictions, we were able to identify a set of consensus

efficient programs. Annual screening with eligibility based on

NLST criteria (beginning at age 55, continuing to age 75 for

current and former smokers with a minimum of 30 pack-years and

less than 15 years since quitting) was not among the programs on

the efficient frontier of any of the five models. Results from all

models showed that programs that extended the screening age

beyond 75 prevented more lung cancer deaths for relatively few

additional screens. Note that in our modeling, the stopping age for

a program was the last screen for any individuals who still met the

smoking cutoffs, and not the last year to be invited to begin a

screening program. In the NLST which had an upper eligibility

age of 74 years, individuals were as old as (77 or, rarely, 78) at the

third screen. Our finding that programs that screened eligible

individuals past age 75 years were efficient was unchanged when

more older patients were ineligible for screening due to

comorbidities that categorized them as non-operative candidates

(based on results from one model) or when life years saved was

substituted for the measure of benefit. While in other cancers (e.g.

breast and colorectal) screening is not generally recommended

beyond age 75 and not generally recommended every year, in lung

cancer annual screening to older ages can be beneficial because:

(1) the age-specific incidence curve for lung cancer is quite steep,

and (2) the high lethality of the disease makes early detection

worthwhile, even among individuals with a somewhat modest life

expectancy. It is also important to note that had we defined life

years saved (instead of lung cancer deaths avoided) as the measure

of benefit, one could logically predict that strategies with younger

stopping ages would be more likely to emerge as ‘consensus

efficient’.

Our predicted NNS for A55-80-30-15 varied across models,

ranging from 19.8 (Model F) to 100.5 (Model M), but all were

below published estimates of NNS for only 3 screens of (256) [18]

and closer to published NNS for mammography (95) or FOBT

(roughly 130) for healthy 50 year-olds [19].

For consensus programs with screening until age 80, between

11% (for the least frequent programs with strictest eligibility, e.g.,

T60-75-40-10) and 40% (for the annual programs with more

inclusive eligibility, e.g., A45-80-10-25) of the cohort born in 1950

would be screened at least once after age 45. Although not directly

comparable to earlier estimates that 6% (8.7 million people) of US

adults over 40 would meet the NLST eligibility cutoffs for lung

cancer screening each year [20,21], our estimate of 11% of

individuals seems reasonable.

We identified a set of consensus efficient programs rather than a

single optimal strategy, because the efficiency frontiers did not

identify a consensus inflexion point at which additional screens

provided diminishing benefits. The least intensive programs at the

lower left of the frontiers (Figure 2) may be less attractive, however,

since annual screening consistently prevented more lung cancer

deaths than did triennial or biennial programs. The most-intensive

screening programs, on the other hand, will lead to more

accumulated harms (radiation exposure from additional imaging

examinations, overdiagnosis, invasive biopsies) and costs.

Screening programs cannot be evaluated in isolation from the

follow-up algorithm. In the NLST, an average of 24% of

individuals in a given round of screening (CT arm) had results

requiring some follow-up, but the trial did not specify a follow-up

regimen, leaving open the question of the optimal regimen for

individuals with positive screens, most of whom are healthy [4,22].

In models (E, F, U) that used implicit follow-up algorithms based

on the experience of participants in the NLST, extrapolating the

rate of follow-up to less frequent screening programs was

dependent on the assumption that the rates of follow up exams

and early detection of lung cancers (defined in the NLST and

models E, F, and U as ‘screen-detected’ even if first seen on a

follow-up exam) would not change. In the models (M, S) that

explicitly modeled follow-up programs based on size, follow-up

exams could change the timing of detection of a lung cancer, but

the assumptions used here for frequency of follow-up imaging may

not be representative of eventual practice patterns.

Several limitations of our analysis are important to note. The

models do not simulate non-lung cancer incidental findings (e.g.,

coronary artery calcification, AAA, or other malignancies), so our

results do not include potential benefits (or harms) due to their

detection and treatment. There are few data to predict adherence

patterns for lung cancer screening [20,23], and many possibilities

to model. We conducted an idealized analysis with the goal of

informing guidelines and did not consider that individuals will self-

select for participation in screening based on their comorbidities,

specific smoking history, or family history, as observed in screening

trials [24,25]. It will be important to monitor how lung cancer

screening is implemented in community settings (including

recruitment, participation, positive screen evaluations, diagnosis,

referral for treatment), and modeling can suggest the most

important leverage points to optimize the process. Definitive

evidence on the relationship between smoking cessation and

NLST screening results was not available in time for our analyses.

Based on limited data with non-standardized definitions of ‘quit’

[26–29] and the PLCO Trial, which found no correlation between

CXR screening result and smoking behavior [30], we assumed

screening did not affect background smoking patterns.

Efficient screening programs might differ in populations with

different smoking patterns or other-cause mortality risks than the

cohort we simulated. To simplify the comparison of hundreds of

programs, we performed our analyses in a single birth cohort and

did not estimate total lung cancer deaths avoided in the US [31].

Our requirement that individuals meet all eligibility criteria

(including years since quitting) was transparent and is a step

towards risk-based screening criteria (our models account for

decreasing risks of death from lung cancer and other causes after

quitting), but may not reflect guidelines, which typically define

eligibility to begin screening. Future analyses to examine programs

that define eligibility based on risk models will require that the

models and population input files include additional characteristics

(e.g., BMI, education) that go beyond age and smoking exposure

[32–36]. We did not incorporate increases in operative mortality

rates by age, or special clinical considerations individual to a

particular patient.

Although the rankings of programs were consistent across

models, uncertainty in absolute numbers of lung cancer deaths

avoided (and life years saved) remained, due to variation in the

underlying assumptions regarding unobserved disease processes

[37]. Underlying the differences across models in predicted

absolute benefits is a variation in the predicted future number of

lung cancer cases in the absence of screening (Figure S5 in File S1).

Essentially, our consortium of 5 models served as a sensitivity

analysis on model structure and demonstrated that even when

model heterogeneity was specifically taken into account, the

models identified similar efficient programs (i.e., the consensus set).

Our results highlight tradeoffs between preventing greater

numbers of lung cancer deaths and the additional screening exams

required. Guidelines for screening also consider tradeoffs in gains

in life expectancy and important harms, including invasive

biopsies for benign disease, overdiagnosis, and lung cancers

Benefits of Lung Cancer Screening Programs
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related to radiation from diagnostic imaging examinations [10].

Difficulties with estimating population effects of screening include

the potential for concurrent smoking cessation programs to

augment the benefits from screening, and the heterogeneity of

the radiation dose attributable to a given CT exam, which could

vary as much as 10-fold depending on the size of the patient, the

generation of scanner, and the protocol in use at the clinical setting

[38]. All smokers, whether undergoing screening or not, should

receive cessation assistance and be encouraged to quit [39].

Supporting Information

File S1 Supporting figures and tables. Figure S1,
Prevalence of smoking by age in 1950 birth cohort.
Summary of shared input data (used by all 5 models) on smoking

patterns for the US cohort born in 1950. Prevalence shown is

estimated in the absence of lung cancer mortality. Version 1.0 of

the Smoking History Generator (SHG) refers to published data

through 2000 (Anderson, et al.), and version 1.5 supplies the 1950

birth cohort used for this analysis with data through 2009 and

projections past 2009. Figure S2, Other-cause mortality, by
smoking quintile, in 1950 birth cohort. These curves show

the other-cause (non-lung cancer) mortality for never smokers and

for current smokers by smoking quintile (Q, of cigarettes per day)

for the male birth cohort of 1950, out to age 99. Former smokers

are intermediate to current and never smokers. There is a similar

plot for females. These were shared inputs used by all the models.

Note that the rates of non-lung cancer mortality represent the US

population, not trial (NLST or PLCO) participants. Figure S3,
Prevalence of smoking by age in 1950 birth cohort.
Output from one model showing smoking prevalence by age

(calendar year), in a no screening scenario. Proportions of current/

former/never smokers are in the presence of lung cancer mortality

as well as all-cause mortality. Figure S4, Prevalence of
smoking by age and pack-years in 1950 birth cohort.
Output from one model showing smoking prevalence by category

of pack-year and age. The proportion of the cohort by age that has

accumulated the specified number of pack-years in the presence of

lung cancer mortality and other-cause mortality. Figure S5,
Incidence, no screening scenario, output from all
models. For predictions past observed SEER data (over age

60) there are no observed data, but we used an age-period-cohort

model to project past observed years (‘Projected’ red double line in

plots below), which shows that the models are most divergent after

age 85, when SEER data become most sparse. We cannot strictly

compare incidence to that in prior birth cohorts since smoking

patterns are dissimilar, and incidence varies by cohort. Figure S6,
Mortality, no screening scenario, output from all
models. The vertical line at age 90 indicates age at which all

event counts (screens, deaths and deaths averted, and life years

gained) were truncated for the analyses reported here. Although

the models ranked programs similarly, there was variability in the

total numbers of predicted lung cancer cases, deaths, and therefore

lung cancer deaths prevented. The differences in rates in the no

screening scenario in large part explains the predicted differences

between models. The four models (E, F, S, and U) which use two-

stage or multi-stage clonal expansion models have more similarly

shaped curves than the fifth model (M), which does not use a

clonal expansion component (see Table S1 in File S1). Figure S7,
Results from all models analogous to Figure 1 in article.
Figure S8, Results from all models analogous to Figure 2
in article. Figure S9, Secondary results with reduced
operative candidacy with age. The dashed line denotes the

efficiency frontier in the main analysis. Table S1, Additional
Detail on Models. Table S2, Complete List of 120
Consensus Efficient Scenarios. Table S3, Comparison
of Consensus Efficient Scenarios Identified Using Life-
years Saved or Lung Cancer Deaths Avoided as Measure
of Benefit.
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