77 research outputs found
Quantifying the contribution of sediment compaction to late Holocene salt-marsh sea-level reconstructions, North Carolina, USA
Salt-marsh sediments provide accurate and precise reconstructions of late Holocene relative sea-level changes. However, compaction of salt-marsh stratigraphies can cause post-depositional lowering (PDL) of the samples used to reconstruct sea level, creating an estimation of former sea level that is too low and a rate of rise that is too great. We estimated the contribution of compaction to late Holocene sea-level trends reconstructed at Tump Point, North Carolina, USA. We used a geotechnical model that was empirically calibrated by performing tests on surface sediments from modern depositional environments analogous to those encountered in the sediment core. The model generated depth-specific estimates of PDL, allowing samples to be returned to their depositional altitudes. After removing an estimate of land-level change, error-in-variables changepoint analysis of the decompacted and original sea-level reconstructions identified three trends. Compaction did not generate artificial sea-level trends and cannot be invoked as a causal mechanism for the features in the Tump Point record. The maximum relative contribution of compaction to reconstructed sea-level change was 12%. The decompacted sea-level record shows 1.71 mm yr−1 of rise since AD 1845
Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus.
BACKGROUND: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. METHOD: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/ ), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation. RESULTS: Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 × 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 × 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 × 10(-4)) identified in the general populations, and rs113824616 (P = 7 × 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P < 0.05 in East Asians, but none of the associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P < 0.05. CONCLUSION: This study identified four independent association signals at 12p11 and revealed potentially functional variants, providing additional insights into the underlying biological mechanism(s) for the association observed between variants at 12p11 and breast cancer risk.UK funding includes Cancer Research UK and NIH.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13058-016-0718-
Refined histopathological predictors of BRCA1 and BRCA2 mutation status: A large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia
Introduction: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical modeling to assess pathogenicity of BRCA1 or BRCA2 variants of uncertain clinical significance. We analyzed large pathology datasets accrued by the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC) to reassess histopathological predictors of BRCA1 and BRCA2 mutation status, and provide robust likelihood ratio (LR) estimates for statistical modeling. Methods: Selection criteria for study/center inclusion were estrogen receptor (ER) status or grade data available for invasive breast cancer diagnosed younger than 70 years. The dataset included 4,477 BRCA1 mutation carriers, 2,565 BRCA2 mutation carriers, and 47,565 BCAC breast cancer cases. Country-stratified estimates of the
Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk
A genome-wide gene-environment interaction study of breast cancer risk for women of European ancestry
Background
Genome-wide studies of gene–environment interactions (G×E) may identify variants associated with disease risk in conjunction with lifestyle/environmental exposures. We conducted a genome-wide G×E analysis of ~ 7.6 million common variants and seven lifestyle/environmental risk factors for breast cancer risk overall and for estrogen receptor positive (ER +) breast cancer.
Methods
Analyses were conducted using 72,285 breast cancer cases and 80,354 controls of European ancestry from the Breast Cancer Association Consortium. Gene–environment interactions were evaluated using standard unconditional logistic regression models and likelihood ratio tests for breast cancer risk overall and for ER + breast cancer. Bayesian False Discovery Probability was employed to assess the noteworthiness of each SNP-risk factor pairs.
Results
Assuming a 1 × 10–5 prior probability of a true association for each SNP-risk factor pairs and a Bayesian False Discovery Probability < 15%, we identified two independent SNP-risk factor pairs: rs80018847(9p13)-LINGO2 and adult height in association with overall breast cancer risk (ORint = 0.94, 95% CI 0.92–0.96), and rs4770552(13q12)-SPATA13 and age at menarche for ER + breast cancer risk (ORint = 0.91, 95% CI 0.88–0.94).
Conclusions
Overall, the contribution of G×E interactions to the heritability of breast cancer is very small. At the population level, multiplicative G×E interactions do not make an important contribution to risk prediction in breast cancer
Physical activity, sedentary time and breast cancer risk: a Mendelian randomisation study
Objectives: Physical inactivity and sedentary behaviour are associated with higher breast cancer risk in observational studies, but ascribing causality is difficult. Mendelian randomisation (MR) assesses causality by simulating randomised trial groups using genotype. We assessed whether lifelong physical activity or sedentary time, assessed using genotype, may be causally associated with breast cancer risk overall, pre/post-menopause, and by case-groups defined by tumour characteristics.
Methods: We performed two-sample inverse-variance-weighted MR using individual-level Breast Cancer Association Consortium case-control data from 130 957 European-ancestry women (69 838 invasive cases), and published UK Biobank data (n=91 105–377 234). Genetic instruments were single nucleotide polymorphisms (SNPs) associated in UK Biobank with wrist-worn accelerometer-measured overall physical activity (nsnps=5) or sedentary time (nsnps=6), or accelerometer-measured (nsnps=1) or self-reported (nsnps=5) vigorous physical activity.
Results: Greater genetically-predicted overall activity was associated with lower breast cancer overall risk (OR=0.59; 95% confidence interval (CI) 0.42 to 0.83 per-standard deviation (SD;~8 milligravities acceleration)) and for most case-groups. Genetically-predicted vigorous activity was associated with lower risk of pre/perimenopausal breast cancer (OR=0.62; 95% CI 0.45 to 0.87,≥3 vs. 0 self-reported days/week), with consistent estimates for most case-groups. Greater genetically-predicted sedentary time was associated with higher hormone-receptor-negative tumour risk (OR=1.77; 95% CI 1.07 to 2.92 per-SD (~7% time spent sedentary)), with elevated estimates for most case-groups. Results were robust to sensitivity analyses examining pleiotropy (including weighted-median-MR, MR-Egger).
Conclusion: Our study provides strong evidence that greater overall physical activity, greater vigorous activity, and lower sedentary time are likely to reduce breast cancer risk. More widespread adoption of active lifestyles may reduce the burden from the most common cancer in women
Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus
The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799-121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000-120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Perallelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08-1.13, P = 1.49 x 10(-21)). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity PPeer reviewe
Breast cancer risk factors and survival by tumor subtype: pooled analyses from the breast cancer association consortium
Background: It is not known whether modifiable lifestyle factors that predict survival after invasive breast cancer differ by subtype.Methods: We analyzed data for 121,435 women diagnosed with breast cancer from 67 studies in the Breast Cancer Association Consortium with 16,890 deaths (8,554 breast cancer specific) over 10 years. Cox regression was used to estimate associations between risk factors and 10-year all-cause mortality and breast cancer-specific mortality overall, by estrogen receptor (ER) status, and by intrinsic-like subtype.Results: There was no evidence of heterogeneous associations between risk factors and mortality by subtype (P-adj > 0.30). The strongest associations were between all-cause mortality and BMI >= 30 versus 18.5-25 kg/m(2) [HR (95% confidence interval (CI), 1.19 (1.06-1.34)]; current versus never smoking [1.37 (1.27-1.47)], high versus low physical activity [0.43 (0.21-0.86)], age >= 30 years versus 0-= 10 years since last full-term birth [1.31 (1.11-1.55)]; ever versus never use of oral contraceptives [0.91 (0.87-0.96)]; ever versus never use of menopausal hormone therapy, including current estrogen-progestin therapy [0.61 (0.54-0.69)]. Similar associations with breast cancer mortality were weaker; for example, 1.11 (1.02-1.21) for current versus never smoking.Conclusions: We confirm associations between modifiable lifestyle factors and 10-year all-cause mortality. There was no strong evidence that associations differed by ER status or intrinsic-like subtype.Impact: Given the large dataset and lack of evidence that associations between modifiable risk factors and 10-year mortality differed by subtype, these associations could be cautiously used in prognostication models to inform patient-centered care.Surgical oncolog
- …