128 research outputs found

    Mathematics of Gravitational Lensing: Multiple Imaging and Magnification

    Full text link
    The mathematical theory of gravitational lensing has revealed many generic and global properties. Beginning with multiple imaging, we review Morse-theoretic image counting formulas and lower bound results, and complex-algebraic upper bounds in the case of single and multiple lens planes. We discuss recent advances in the mathematics of stochastic lensing, discussing a general formula for the global expected number of minimum lensed images as well as asymptotic formulas for the probability densities of the microlensing random time delay functions, random lensing maps, and random shear, and an asymptotic expression for the global expected number of micro-minima. Multiple imaging in optical geometry and a spacetime setting are treated. We review global magnification relation results for model-dependent scenarios and cover recent developments on universal local magnification relations for higher order caustics.Comment: 25 pages, 4 figures. Invited review submitted for special issue of General Relativity and Gravitatio

    MORC1 exhibits cross-species differential methylation in association with early life stress as well as genome-wide association with MDD

    Get PDF
    Early life stress (ELS) is associated with increased vulnerability for diseases in later life, including psychiatric disorders. Animal models and human studies suggest that this effect is mediated by epigenetic mechanisms. In humans, epigenetic studies to investigate the influence of ELS on psychiatric phenotypes are limited by the inaccessibility of living brain tissue. Due to the tissue-specific nature of epigenetic signatures, it is impossible to determine whether ELS induced epigenetic changes in accessible peripheral cells, for example, blood lymphocytes, reflect epigenetic changes in the brain. To overcome these limitations, we applied a cross-species approach involving: (i) the analysis of CD34+ cells from human cord blood; (ii) the examination of blood-derived CD3+ T cells of newborn and adolescent nonhuman primates (Macaca mulatta); and (iii) the investigation of the prefrontal cortex of adult rats. Several regions in MORC1 (MORC family CW-type zinc finger 1; previously known as: microrchidia (mouse) homolog) were differentially methylated in response to ELS in CD34+ cells and CD3+ T cells derived from the blood of human and monkey neonates, as well as in CD3+ T cells derived from the blood of adolescent monkeys and in the prefrontal cortex of adult rats. MORC1 is thus the first identified epigenetic marker of ELS to be present in blood cell progenitors at birth and in the brain in adulthood. Interestingly, a gene-set-based analysis of data from a genome-wide association study of major depressive disorder (MDD) revealed an association of MORC1 with MDD

    Systematic Review of Medicine-Related Problems in Adult Patients with Atrial Fibrillation on Direct Oral Anticoagulants

    Get PDF
    New oral anticoagulant agents continue to emerge on the market and their safety requires assessment to provide evidence of their suitability for clinical use. There-fore, we searched standard databases to summarize the English language literature on medicine-related problems (MRPs) of direct oral anticoagulants DOACs (dabigtran, rivaroxban, apixban, and edoxban) in the treatment of adults with atri-al fibrillation. Electronic databases including Medline, Embase, International Pharmaceutical Abstract (IPA), Scopus, CINAHL, the Web of Science and Cochrane were searched from 2008 through 2016 for original articles. Studies pub-lished in English reporting MRPs of DOACs in adult patients with AF were in-cluded. Seventeen studies were identified using standardized protocols, and two reviewers serially abstracted data from each article. Most articles were inconclusive on major safety end points including major bleeding. Data on major safety end points were combined with efficacy. Most studies inconsistently reported adverse drug reactions and not adverse events or medication error, and no definitions were consistent across studies. Some harmful drug effects were not assessed in studies and may have been overlooked. Little evidence is provided on MRPs of DOACs in patients with AF and, therefore, further studies are needed to establish the safety of DOACs in real-life clinical practice

    Improving Genetic Prediction by Leveraging Genetic Correlations Among Human Diseases and Traits

    Get PDF
    Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7 for height to 47 for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait. © 2018 The Author(s)

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe

    Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder

    Get PDF
    This paper is dedicated to the memory of Psychiatric Genomics Consortium (PGC) founding member and Bipolar disorder working group co-chair Pamela Sklar. We thank the participants who donated their time, experiences and DNA to this research, and to the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who comprise the PGC. The views expressed are those of the authors and not necessarily those of any funding or regulatory body. Analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org ) hosted by SURFsara, and the Mount Sinai high performance computing cluster (http://hpc.mssm.edu).Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P<1x10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (GWS, p < 5x10-8) in the discovery GWAS were not GWS in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 20 novel loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene-sets including regulation of insulin secretion and endocannabinoid signaling. BDI is strongly genetically correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential new biological mechanisms for BD.This work was funded in part by the Brain and Behavior Research Foundation, Stanley Medical Research Institute, University of Michigan, Pritzker Neuropsychiatric Disorders Research Fund L.L.C., Marriot Foundation and the Mayo Clinic Center for Individualized Medicine, the NIMH Intramural Research Program; Canadian Institutes of Health Research; the UK Maudsley NHS Foundation Trust, NIHR, NRS, MRC, Wellcome Trust; European Research Council; German Ministry for Education and Research, German Research Foundation IZKF of Münster, Deutsche Forschungsgemeinschaft, ImmunoSensation, the Dr. Lisa-Oehler Foundation, University of Bonn; the Swiss National Science Foundation; French Foundation FondaMental and ANR; Spanish Ministerio de Economía, CIBERSAM, Industria y Competitividad, European Regional Development Fund (ERDF), Generalitat de Catalunya, EU Horizon 2020 Research and Innovation Programme; BBMRI-NL; South-East Norway Regional Health Authority and Mrs. Throne-Holst; Swedish Research Council, Stockholm County Council, Söderström Foundation; Lundbeck Foundation, Aarhus University; Australia NHMRC, NSW Ministry of Health, Janette M O'Neil and Betty C Lynch

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    Genome-wide by Environment Interaction Studies of Depressive Symptoms and Psychosocial Stress in UK Biobank and Generation Scotland

    Get PDF
    Stress is associated with poorer physical and mental health. To improve our understanding of this link, we performed genome-wide association studies (GWAS) of depressive symptoms and genome-wide by environment interaction studies (GWEIS) of depressive symptoms and stressful life events (SLE) in two UK population-based cohorts (Generation Scotland and UK Biobank). No SNP was individually significant in either GWAS, but gene-based tests identified six genes associated with depressive symptoms in UK Biobank (DCC, ACSS3, DRD2, STAG1, FOXP2 and KYNU; p < 2.77 x 10(-6)). Two SNPs with genome-wide significant GxE effects were identified by GWEIS in Generation Scotland: rs12789145 (53-kb downstream PIWIL4; p = 4.95 x 10(-9); total SLE) and rs17070072 (intronic to ZCCHC2; p = 1.46 x 10(-8); dependent SLE). A third locus upstream CYLC2 (rs12000047 and rs12005200, p < 2.00 x 10(-8); dependent SLE) when the joint effect of the SNP main and GxE effects was considered. GWEIS gene-based tests identified: MTNR1B with GxE effect with dependent SLE in Generation Scotland; and PHF2 with the joint effect in UK Biobank (p < 2.77 x 10(-6)). Polygenic risk scores (PRSs) analyses incorporating GxE effects improved the prediction of depressive symptom scores, when using weights derived from either the UK Biobank GWAS of depressive symptoms (p = 0.01) or the PGC GWAS of major depressive disorder (p = 5.91 x 10(-3)). Using an independent sample, PRS derived using GWEIS GxE effects provided evidence of shared aetiologies between depressive symptoms and schizotypal personality, heart disease and COPD. Further such studies are required and may result in improved treatments for depression and other stress-related conditions

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk
    corecore