942 research outputs found

    The Stability of Fresh Zero-Slump Concrete

    Get PDF
    This report focuses upon the effects of cement-substitution in part by two potash feldspar powders, and by silica-fume, on the fresh concrete strength of newly compacted cylinder samples. The water/cement-ratio was kept constant at 0.31. An Intensive Compaction Tester (abbrev: IC-Tester) which exerts a slow kneading action under pressure on the sample in a cylindrical mold, was utilized. It was found that the fresh cylinder compressive strength increased with decreasing water-content and more than doubled with each of the 3 fillers replacing 30 % of the cement-volume. A tradeoff was a loss in 28-day compressive strength for both of the feldspars, while the 28-day strength of the silica-samples remained virtually unaffected

    Is short sleep bad for the brain? Brain structure and cognitive function in short sleepers

    Get PDF
    Many sleep less than recommended without experiencing daytime tiredness. According to prevailing views, short sleep increases risk of lower brain health and cognitive function. Chronic mild sleep deprivation could cause undetected sleep debt, negatively affecting cognitive function and brain health. However, it is possible that some have less sleep need and are more resistant to negative effects of sleep loss. We investigated this question using a combined cross-sectional and longitudinal sample of 47,029 participants (age 20-89 years) with measures of self-reported sleep, including 51,295 MRIs of the brain and cognitive tests. 701 participants who reported to sleep < 6 hours did not experience daytime tiredness or sleep problems. These short sleepers showed significantly larger regional brain volumes than both short sleepers with daytime tiredness and sleep problems (n = 1619) and participants sleeping the recommended 7-8 hours (n = 3754). However, both groups of short sleepers showed slightly lower general cognitive function, 0.16 and 0.19 standard deviations, respectively. Analyses using acelerometer-estimated sleep duration confirmed the findings, and the associations remained after controlling for body mass index, depression symptoms, income and education. The results suggest that some people can cope with less sleep without obvious negative consequences for brain morphometry, in line with a view on sleep need as individualized. Tiredness and sleep problems seem to be more relevant for brain structural differences than sleep duration per se. However, the slightly lower performance on tests of general cognitive function warrants closer examination by experimental designs in natural settings

    No phenotypic or genotypic evidence for a link between sleep duration and brain atrophy

    Get PDF
    Short sleep is held to cause poorer brain health, but is short sleep associated with higher rates of brain structural decline? Analysing 8,153 longitudinal MRIs from 3,893 healthy adults, we found no evidence for an association between sleep duration and brain atrophy. In contrast, cross-sectional analyses (51,295 observations) showed inverse U-shaped relationships, where a duration of 6.5 (95% confidence interval, (5.7, 7.3)) hours was associated with the thickest cortex and largest volumes relative to intracranial volume. This fits converging evidence from research on mortality, health and cognition that points to roughly seven hours being associated with good health. Genome-wide association analyses suggested that genes associated with longer sleep for below-average sleepers were linked to shorter sleep for above-average sleepers. Mendelian randomization did not yield evidence for causal impacts of sleep on brain structure. The combined results challenge the notion that habitual short sleep causes brain atrophy, suggesting that normal brains promote adequate sleep duration—which is shorter than current recommendations

    Myocardial Work in Patients Hospitalized With COVID‐19:Relation to Biomarkers, COVID‐19 Severity, and All‐Cause Mortality

    Get PDF
    BACKGROUND: COVID‐19 infection has been hypothesized to affect left ventricular function; however, the underlying mechanisms and the association to clinical outcome are not understood. The global work index (GWI) is a novel echocardiographic measure of systolic function that may offer insights on cardiac dysfunction in COVID‐19. We hypothesized that GWI was associated with disease severity and all‐cause death in patients with COVID‐19. METHODS AND RESULTS: In a multicenter study of patients admitted with COVID‐19 (n=305), 249 underwent pressure‐strain loop analyses to quantify GWI at a median time of 4 days after admission. We examined the association of GWI to cardiac biomarkers (troponin and NT‐proBNP [N‐terminal pro‐B‐type natriuretic peptide]), disease severity (oxygen requirement and CRP [C‐reactive protein]), and all‐cause death. Patients with elevated troponin (n=71) exhibited significantly reduced GWI (1508 versus 1707 mm Hg%; P=0.018). A curvilinear association to NT‐proBNP was observed, with increasing NT‐proBNP once GWI decreased below 1446 mm Hg%. Moreover, GWI was significantly associated with a higher oxygen requirement (relative increase of 6% per 100–mm Hg% decrease). No association was observed with CRP. Of the 249 patients, 37 died during follow‐up (median, 58 days). In multivariable Cox regression, GWI was associated with all‐cause death (hazard ratio, 1.08 [95% CI, 1.01–1.15], per 100–mm Hg% decrease), but did not increase C‐statistics when added to clinical parameters. CONCLUSIONS: In patients admitted with COVID‐19, our findings indicate that NT‐proBNP and troponin may be associated with lower GWI, whereas CRP is not. GWI was independently associated with all‐cause death, but did not provide prognostic information beyond readily available clinical parameters. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04377035

    Self-reported sleep relates to hippocampal atrophy across the adult lifespan: results from the Lifebrain consortium.

    Get PDF
    OBJECTIVES: Poor sleep is associated with multiple age-related neurodegenerative and neuropsychiatric conditions. The hippocampus plays a special role in sleep and sleep-dependent cognition, and accelerated hippocampal atrophy is typically seen with higher age. Hence, it is critical to establish how the relationship between sleep and hippocampal volume loss unfolds across the adult lifespan. METHODS: Self-reported sleep measures and MRI-derived hippocampal volumes were obtained from 3105 cognitively normal participants (18-90 years) from major European brain studies in the Lifebrain consortium. Hippocampal volume change was estimated from 5116 MRIs from 1299 participants for whom longitudinal MRIs were available, followed up to 11 years with a mean interval of 3.3 years. Cross-sectional analyses were repeated in a sample of 21,390 participants from the UK Biobank. RESULTS: No cross-sectional sleep-hippocampal volume relationships were found. However, worse sleep quality, efficiency, problems, and daytime tiredness were related to greater hippocampal volume loss over time, with high scorers showing 0.22% greater annual loss than low scorers. The relationship between sleep and hippocampal atrophy did not vary across age. Simulations showed that the observed longitudinal effects were too small to be detected as age-interactions in the cross-sectional analyses. CONCLUSIONS: Worse self-reported sleep is associated with higher rates of hippocampal volume decline across the adult lifespan. This suggests that sleep is relevant to understand individual differences in hippocampal atrophy, but limited effect sizes call for cautious interpretation

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Search for Physics beyond the Standard Model in Events with Overlapping Photons and Jets

    Get PDF
    Results are reported from a search for new particles that decay into a photon and two gluons, in events with jets. Novel jet substructure techniques are developed that allow photons to be identified in an environment densely populated with hadrons. The analyzed proton-proton collision data were collected by the CMS experiment at the LHC, in 2016 at root s = 13 TeV, and correspond to an integrated luminosity of 35.9 fb(-1). The spectra of total transverse hadronic energy of candidate events are examined for deviations from the standard model predictions. No statistically significant excess is observed over the expected background. The first cross section limits on new physics processes resulting in such events are set. The results are interpreted as upper limits on the rate of gluino pair production, utilizing a simplified stealth supersymmetry model. The excluded gluino masses extend up to 1.7 TeV, for a neutralino mass of 200 GeV and exceed previous mass constraints set by analyses targeting events with isolated photons.Peer reviewe

    Calibration of the CMS hadron calorimeters using proton-proton collision data at root s=13 TeV

    Get PDF
    Methods are presented for calibrating the hadron calorimeter system of theCMSetector at the LHC. The hadron calorimeters of the CMS experiment are sampling calorimeters of brass and scintillator, and are in the form of one central detector and two endcaps. These calorimeters cover pseudorapidities vertical bar eta vertical bar ee data. The energy scale of the outer calorimeters has been determined with test beam data and is confirmed through data with high transverse momentum jets. In this paper, we present the details of the calibration methods and accuracy.Peer reviewe

    Measurement of the t(t)over-barb(b)over-bar production cross section in the all-jet final state in pp collisions at root s=13 TeV

    Get PDF
    A measurement of the production cross section of top quark pairs in association with two b jets (t (t) over barb (b) over bar) is presented using data collected in proton-proton collisions at root s=13 TeV by the CMS detector at the LHC corresponding to an integrated luminosity of 35.9 fb(-1). The cross section is measured in the all-jet decay channel of the top quark pair by selecting events containing at least eight jets, of which at least two are identified as originating from the hadronization of b quarks. A combination of multivariate analysis techniques is used to reduce the large background from multijet events not containing a top quark pair, and to help discriminate between jets originating from top quark decays and other additional jets. The cross section is determined for the total phase space to be 5.5 +/- 0.3 (stat)(-1.3)(+)(1.6) (syst)pb and also measured for two fiducial t (t) over barb (b) over bar, definitions. The measured cross sections are found to be larger than theoretical predictions by a factor of 1.5-2.4, corresponding to 1-2 standard deviations. (C) 2020 The Author. Published by Elsevier B.V.Peer reviewe
    • 

    corecore