154 research outputs found

    Linear parameter-varying model to design control laws for an artificial pancreas

    Get PDF
    The contribution of this work is the generation of a control-oriented model for insulin-glucose dynamic regulation in type 1 diabetes mellitus (T1DM). The novelty of this model is that it includes the time-varying nature, and the inter-patient variability of the glucose-control problem. In addition, the model is well suited for well-known and standard controller synthesis procedures. The outcome is an average linear parameter-varying (LPV) model that captures the dynamics from the insulin delivery input to the glucose concentration output constructed based on the UVA/Padova metabolic simulator. Finally, a system-oriented reinterpretation of the classical ad-hoc 1800 rule is applied to adapt the model's gain. The effectiveness of this approach is quantified both in open- and closed-loop. The first one by computing the root mean square error (RMSE) between the glucose deviation predicted by the proposed model and the UVA/Padova one. The second measure is determined by using the ν-gap as a metric to determine distance, in terms of closed-loop performance, between both models. For comparison purposes, both open- (RMSE) and closed-loop (ν-gap metric) quality indicators are also computed for other control-oriented models previously presented. This model allows the design of LPV controllers in a straightforward way, considering its affine dependence on the time-varying parameter, which can be computed in real-time. Illustrative simulations are included. In addition, the presented modeling strategy was employed in the design of an artificial pancreas (AP) control law that successfully withstood rigorous testing using the UVA/Padova simulator, and that was subsequently deployed in a clinical trial campaign where five adults remained in closed-loop for 36 h. This was the first ever fully closed-loop clinical AP trial in Argentina, and the modeling strategy presented here is considered instrumental in resulting in a very successful clinical outcome.Fil: Colmegna, Patricio Hernán. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sánchez Peña, Ricardo S.. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gondhalekar, R.. Harvard University; Estados Unido

    Interpolation for gain-scheduled control with guarantees

    Get PDF
    Here, a methodology is presented which considers the interpolation of linear time-invariant (LTI) controllers designed for different operating points of a nonlinear system in order to produce a gain-scheduled controller. Guarantees of closed-loop quadratic stability and performance at intermediate interpolation points are presented in terms of a set of linear matrix inequalities (LMIs). The proposed interpolation scheme can be applied in cases where the system must remain at the operating points most of the time and the transitions from one point to another rarely occur, e.g., chemical processes, satellites.Fil: Bianchi, Fernando Daniel. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sánchez Peña, Ricardo S.. Instituto Tecnológico de Buenos Aires; Argentin

    A gain-scheduled LPV control for oxygen stoichiometry regulation in PEM fuel cell systems

    Get PDF
    The article addresses the LPV control of a Polymer Electrolyte Membrane Fuel Cell (PEMFC). In order to optimize efficiency, PEMFCs require reliable control systems ensuring stability and performance, as well as robustness to model uncertainties and external perturbations. On the other hand, PEMFCs present a highly nonlinear behavior that demands nonlinear and/or adaptive control strategies to achieve high performance in the entire operating range. Here, a linear parameter varying (LPV) gain scheduled control is proposed. The control is based on a piecewise affine LPV representation of the PEMFC, a model that can be available in practice. In order to deal with the saturation of the control action, an LPV anti-windup compensation is also proposed. The complete control strategy is applied to several experimental practical situations in a laboratory fuel cell system to evaluate its performance and the reliability of the proposed algorithms.The research of F.D. Bianchi was supported by the European Regional Development Funds (ERDF, FEDER Programa Competitivitat de Catalunya 2007-2013). The research of C. Kunusch has been supported by the Seventh Framework Programme of the European Community through the Marie Curie actions (GA: PCIG09-GA-2011-293876) and project Puma-Mind (GA: FCH-JU-2011-1-303419), as well as by the CICYT project DPI2011-25649 (MICINN-Spain). The research of C. Ocampo-Martinez has been supported by the project MACPERCON (Ref. 201250E027) of the CSIC. The research of R.S. Sánchez Peña has been supported by CONICET and grant PICT2008-290 from the PRH Program of the Ministry of Science, Technology and Innovation of Argentina.Peer Reviewe

    Non-hybrid glycemic control of type 1 diabetes ambulatory patients

    Get PDF
    [EN] In this work, we present the experience of our research group with the glucose regulation in people with Type 1 Diabetes (insulin-dependent), known as artificial pancreas. Our research group has carried out three clinical trials in Argentina, which were the first ones in Latin America. The first two studies took place in 2016 and 2017, both in the Hospital Italiano de Buenos Aires (HIBA) with five adult subjects and a duration of 36 hours. The second trial evaluated the performance of a novel closed-loop controlalgorithm (without meal insulin boluses), called ARG Automatic Regulation of Glucose) and based on switched LQG control and a safety layer called SAFE (Safery Auxiliary Feedback Element), developed by researchers of our team. More recently and during COVID-19 pandemic, the first ambulatory trials took place, which were carried out in 2021 in a hotel with 5 subjects during 6 days. Additionally, for this third trial, the use of the artificial pancreas platform developed by the UNLP, called InsuMate, was incorporated. This platform connects a smartphone with the insulin pump and glucose monitor, houses the control algorithm, andallows the remote monitoring of multiple users. The results suggest that the ambulatory use of the ARG algorithm is feasible, safe and effective, compared to the usual reatment. In addition, the InsuMate platform was intuitive and easy to use for both healthcare staff and participants of the trial, achieving an over 95% of time in closed-loop.[ES] En este trabajo se presenta la experiencia argentina en el problema de regulación de los niveles de glucosa en sangre para pacientes con Diabetes Mellitus Tipo 1 (insulino-dependientes), denominado Páncreas Artificial. El grupo de trabajo ha realizado 3 pruebas clínicas, las primeras en Latinoamérica. Las dos primeras fueron concretadas en 2016 y 2017, ambas en el Hospital Italiano con 5 pacientes adultos durante 36 hs. En la segunda de ellas se utilizó un nuevo algoritmo de control de lazo cerrado puro (sin bolo prandial), llamado ARG (Automatic Regulation of Glucose) y basado en un control LQG conmutado en combinación con la capa de seguridad SAFE (Safety Auxiliary Feedback Element), desarrollado por investigadores de nuestro equipo. Este año se llevó a cabo la primera prueba ambulatoria, realizada en un hotel con 5 pacientes durante 6 días en marzo de 2021. En esta tercera prueba además, se utilizó una plataforma desarrollada por la Universidad Nacional de La Plata (UNLP), denominada InsuMate. Ésta conecta el celular con la bomba de insulina y el monitor de glucosa, aloja el algoritmo de control y permite el monitoreo remoto de múltiples pacientes. Los resultados obtenidos sugieren que el uso del algoritmo ARG en forma ambulatoria es factible, seguro y eficaz en comparación con la terapia usual. Asimismo, la plataforma InsuMate resultó ser intuitiva y sencilla para los usuarios, tanto médicos como pacientes participantes del ensayo, logrando un tiempo de funcionamiento del lazo cerrado superior al 95 %. Este trabajo ha sido realizado parcialmente gracias al apoyo de las Fundaciones Cellex (España) y Nuria (Argentina), y el financiamiento de los proyectos PICT2017-3211, PICT2019-2554, UNLP/I253, CONICET/PIP2595 y COVID Federal BS AS 28 del gobierno argentino.Garelli, F.; Fushimi, E.; Rosales, N.; Arambarri, D.; Serafini, MC.; De Battista, H.; Grosembacher, LA.... (2022). Control no-híbrido de glucemia ensayado en pacientes ambulatorios con Diabetes Tipo 1. Revista Iberoamericana de Automática e Informática industrial. 19(3):318-329. https://doi.org/10.4995/riai.2022.16652OJS31832919

    Financial feasibility of end-user designed rainwater harvesting and greywater reuse systems for high water use households

    Get PDF
    © 2017, The Author(s). Water availability pressures, competing end-uses and sewers at capacity are all drivers for change in urban water management. Rainwater harvesting (RWH) and greywater reuse (GWR) systems constitute alternatives to reduce drinking water usage and in the case of RWH, reduce roof runoff entering sewers. Despite the increasing popularity of installations in commercial buildings, RWH and GWR technologies at a household scale have proved less popular, across a range of global contexts. For systems designed from the top-down, this is often due to the lack of a favourable cost-benefit (where subsidies are unavailable), though few studies have focused on performing full capital and operational financial assessments, particularly in high water consumption households. Using a bottom-up design approach, based on a questionnaire survey with 35 households in a residential complex in Bucaramanga, Colombia, this article considers the initial financial feasibility of three RWH and GWR system configurations proposed for high water using households (equivalent to >203L per capita per day). A full capital and operational financial assessment was performed at a more detailed level for the most viable design using historic rainfall data. For the selected configuration (‘Alt 2’), the estimated potable water saving was 44% (equivalent to 131m3/year) with a rate of return on investment of 6.5% and an estimated payback period of 23years. As an initial end-user-driven design exercise, these results are promising and constitute a starting point for facilitating such approaches to urban water management at the household scale

    The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library

    Get PDF
    Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)
    corecore