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Abstract

The contribution of this work is the generation of a control-oriented model for insulin-glucose dynamic regulation
in Type 1 Diabetes Mellitus (T1DM). The novelty of this model is that it includes the time-varying nature, and the
inter-patient variability of the glucose-control problem. In addition, the model is well suited for well-known and
standard controller synthesis procedures. The outcome is an average Linear Parameter-Varying (LPV) model that
captures the dynamics from the insulin delivery input to the glucose concentration output constructed based on the
UVA/Padova metabolic simulator. Finally, a system-oriented reinterpretation of the classical ad-hoc 1800 rule is
applied to adapt the model’s gain.

The effectiveness of this approach is quantified both in open- and closed-loop. The first one by computing the Root
Mean Square Error (RMSE) between the glucose deviation predicted by the proposed model and the UVA/Padova
one. The second measure is determined by using the ν-gap as a metric to determine distance, in terms of closed-loop
performance, between both models. For comparison purposes, both open- (RMSE) and closed-loop (ν-gap metric)
quality indicators are also computed for other control-oriented models previously presented.

This model allows the design of LPV controllers in a straightforward way, considering its affine dependence on the
time-varying parameter, which can be computed in real-time. Illustrative simulations are included. In addition, the
presented modeling strategy was employed in the design of an Artificial Pancreas (AP) control law that successfully
withstood rigorous testing using the UVA/Padova simulator, and that was subsequently deployed in a clinical trial
campaign where five adults remained in closed-loop for 36 hours. This was the first ever fully closed-loop clinical
AP trial in Argentina, and the modeling strategy presented here is considered instrumental in resulting in a very
successful clinical outcome.

Keywords: LPV model, controller synthesis, type 1 diabetes, artificial pancreas, ν-gap metric.

1. Introduction

An Artificial Pancreas (AP) is a system that auto-
matically controls glycemia in Type 1 Diabetes Melli-
tus (T1DM) patients by infusing an adequate amount
of insulin, according to the measured glucose level. The
decision of how much insulin to infuse is made by a con-
trol algorithm. In general, this algorithm is based on a
mathematical model that is required to suitably describe
the insulin-glucose dynamics. Thus, the model consti-
tutes a key element in the development of a reliable AP.

∗Corresponding author.
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Several simulation models have been proposed since
the late 1970s [1–4]. They have been used to perform
a vast amount of in silico studies, giving an affordable
and safe means of testing glucose controllers. Thus,
the use of computer simulation has accelerated the
development of AP [5].

The main goal of simulation models is to provide a
blood glucose prediction as close as possible to a real
situation. However, this class of models is not generally
used for controller synthesis, due to its excessive
mathematical complexity. Therefore, simplifications of
these models are generally considered at the controller
design phase, because most of the well established the-
ory of control law design accommodates only simpler
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models that are normally referred to as control-oriented
models. Thus, although control-oriented models have
to represent the underlying dynamics to some degree,
they are mainly obtained for synthesis purposes and
have a much simpler mathematical formulation.

Another aspect that is worth considering in designing
glucose controllers is that most metabolic parameters
related to the insulin-glucose system are not easily
identifiable in practice, and finding each parameter
of a complex and time-varying model is intractable.
Therefore, some tuning based on only a small number
of easily obtainable patient-specific characteristics is
required in practice for a safe and effective AP [6].
Consequently, a few works have been focused on such
personalization [7–11].

One interesting approach to obtain a personalized
control-oriented model is to adapt a low-order model
structure based on a priori patient information. For
example, given the patient’s Total Daily Insulin (TDI),
an insulin sensitivity factor can be obtained using the
so-called 1800 rule (1800/TDI) that is suggested in the
medical care literature [12]. From the medical point
of view, the 1800 rule indicates the maximum drop in
glucose concentration, measured in mg/dl, after a 1
U injection of rapid-acting insulin. Since the work in
[13], that rule has been used in several studies, both
clinical and in silico, to tune the gain of a Linear Time
Invariant (LTI) model to a particular patient [14–19].
Nevertheless, the 1800 rule is an empirical rule, and
the clinical literature does not advise at which glucose
concentration it works best, or is most appropriate. This
is important because the patient’s insulin sensitivity
depends, amongst other factors (see [20, 21]), on the
glucose concentration, meaning that an LTI represen-
tation of the insulin-glucose system is not enough to
totally describe it. This nonlinear behavior is illustrated
in Fig. 1, where the mean DC gain for all the in silico
adults of the UVA/Padova metabolic simulator [22, 23]
linearized at several glucose concentrations is depicted.
Steady-state glucose concentrations were achieved by
only adapting the insulin infusion rate, i.e., the higher
the insulin infusion rate, the lower the steady-state
glucose concentration, and vice versa. Therefore,
the hypoglycemic region presented in Fig. 1 actually
represents a hypoglycemic/hyperinsulinemic region,
and the hyperglycemic region actually represents a
hyperglycemic/hypoinsulinemic region. In order to
understand the shape of that figure, both regions can be
analyzed separately as follows.

Concerning the hypoglycemic/hyperinsulinemic
region, it can be seen from Fig. 1 that there is an
increase in insulin sensitivity when glucose decreases
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Figure 1: Mean DC gain for the adult patients of the distribution ver-
sion of the UVA/Padova simulator, linearized at different glucose con-
centrations. The mean ± 1 STD values are represented by vertical
bars.

below approximately 120 mg/dl. In the UVA/Padova
model, it is assumed that the insulin-dependent utiliza-
tion increases when glucose decreases below its basal
value, which is 120 mg/dl on average. This coincides
with clinical knowledge [24, 25]. The loss of insulin
sensitivity when glucose decreases below very low
concentrations can be explained in the following way.
On the one hand, the insulin-dependent utilization in the
UVA/Padova model is described considering a “risk”
function that increases when glucose decreases below
its basal value (the lower the glucose value, the higher
the risk), and saturates when glucose reaches 60 mg/dl.
On the other hand, there is a counterregulatory response
due to the glucagon action. The static secretion of
glucagon increases when glucose decreases below
its basal value. Together, the increase in glucagon
secretion and the saturation of the “risk” function
related to the insulin-dependent utilization make the
region on the left of Fig. 1 (glucose from 50 to 60
mg/dl) less sensitive to insulin.

Concerning the hyperglycemic/hypoinsulinemic re-
gion, we are aware of the basic clinical knowledge that
indicates a loss of insulin sensitivity in hyperglycemia.
However, it should be considered that such knowl-
edge is generally based on hyperinsulinemic clamps
[26, 27], and that a hyperglycemic/hypoinsulinemic
event is quite different to many, but not all, real-world
hyperglycemic events, which are usually induced
by meal intake and are accompanied by prolonged
glucose appearance and increased insulin infusion. For
example, hyperinsulinemia is associated with insulin
receptor deficiency [28, 29], and several works suggest
that it is the main inducer of insulin resistance, and not
hyperglycemia per se [30–32]. In addition, basing a
control law on this case may be safer than basing it on
the expectation of reduced insulin sensitivity, because
doing so may result in elevated insulin delivery and
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thus may lead to postprandial hypoglycemia.
Multiple Linear Parameter-Varying (LPV) models

have been proposed in the past [33–38]. An LPV model
is a family of linear time-varying systems described in
standard state-space form, with matrices (A,B,C,D)
depending on a time-varying parameter vector ρ(t),
measured in real time:

ẋ(t) = A (ρ)x(t) +B (ρ)u(t) (1)
y(t) = C (ρ)x(t) +D (ρ)u(t).

LPV models were introduced in the control com-
munity in the early 1990s. The first significant results
in terms of analysis and controller synthesis can be
found in [39–42]. It is a good way to represent a large
class of nonlinear models, and particularly, to apply
gain-scheduling control in a systematic way, with the-
oretical guarantees of performance and stability [43].
While in traditional gain-scheduling the gain of a linear
controller is adjusted as the operating condition changes
(something typically used in aircraft control), in LPV
control, a smooth real-time adaptation of the controller
to the operating condition is provided. In addition, but
at the cost of conservatism, the approach can be applied
to an even wider range of systems known as quasi-LPV
systems. In this case, the time-varying parameter can
be one of the states of the model, in particular the
output. Further comments on quasi-LPV models can
also be found in [39, 44]. In [33] and [34], the Bergman
minimal model [1] was considered and transformed
into a quasi-LPV model by an appropriate choice of
parameters. In [35–37], the Sorensen compartmental
model [2] was linearized at different points, which were
defined as the vertexes of an affine-LPV model that cov-
ers the original nonlinear one. This model was used as
an uncertainty LTI model set, and anH∞ controller was
designed to control it, hence, the time-varying charac-
teristics were not exploited. Finally, in [38], an LPV ap-
proach using the Cambridge model [4] was developed.

In this work, the discussion presented in [45] is con-
sidered and adapted to the AP application. There, it is
explained that the use of complex, high-order models
for synthesis is not necessarily related to better closed-
loop performance. In that sense, a simple third-order
LPV model from the insulin delivery input to the glu-
cose deviation output is proposed here, and personalized
by a system-oriented reinterpretation of the 1800 rule.
Thus, a combination of the model personalization using
a priori patient-specific characteristics with the time-
varying description of the dynamics by means of an
LPV system representation, is achieved. Due to the fact
that this modeling strategy is intended mainly for con-

troller design, the ν-gap metric δν (see [46], [47]) is em-
ployed to quantify the quality of achievable closed-loop
performance afforded by the control-oriented model.
Model identification and tuning are performed using the
distribution version of the UVA/Padova metabolic simu-
lator. This simulator has been accepted by the U.S. Food
and Drug Administration (FDA) as a valid tool usable to
test and validate AP control algorithms prior to clinical
trials, and has itself been validated in clinical trials [48].

The paper is organized as follows. In Section 2, we
summarize the main ideas related to control-oriented
models, and describe the procedure to obtain the person-
alized LPV model. In Section 3, we present open- and
closed-loop indexes to quantify the effectiveness of this
approach, including comparisons with other control-
oriented models presented in previous works. A brief
discussion and a design example is presented in Section
4, and finally, conclusions are drawn in Section 5.

2. Materials and methods

2.1. Control-oriented models
The main idea here is based on the discussion

presented in [45] and its main reference [49]. There are
three fundamental contributions in the last years in the
areas of identification and control:

• Seek the best approximate model within a model
set, instead of the true system.

• (In)validate the model against the available data.

• Identify based on the particular purpose the model
should serve (simulation or control design).

The first point is clearly related to the appearance
of robust control during the 1980s, and the second
has been instrumental in reducing model uncertainty.
The last issue led to the area of control-oriented
identification: How to make an a priori selection of
the simplest (in some sense, e.g., order, non/linear,
time-varying/invariant, deterministic/stochastic) design
model in order to achieve the required closed-loop
performance. This has been an important research
topic for the last 20 years (excellent tutorial in [49]).
More recently, robust control-oriented identification
deals with the interplay between identification, model
uncertainty and worst case performance.

To understand this problem we need to acknowledge
the relation between model uncertainty and closed-loop
performance for different model structures. The syn-
thesis procedure is applied to the model and produces a
controller and a performance index. The idea is then to
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identify the simplest model that approaches the desired
performance, rather than a good mimic of the system
dynamics.

In addition, coherence between the model and the
control design procedure is important. Proposed models
with well-established synthesis procedures (H∞, affine
and Linear Fractional Transformation (LFT)-LPV con-
trol, control commutation) in increasing complexity are:

LTI → affine-LPV → LFT-LPV → switched-LPV

A first step towards the proposed objective was taken
in [50], where model (in)validation is achieved based on
the set of controllers that produce a given performance
level. There, the initial nominal model was LTI, the
performance measure was based on the H∞-norm, and
the set of models was defined in terms of the ν-gap
metric, for LTI or Linear Time Varying (LTV) uncer-
tainties. The relation between the size of the model set
and the maximum performance level was based on [51].

Extending this result to more general nominal models
(LPV), performance requirements and model sets has
not been achieved yet. The results in [52] and the
identification/invalidation ones in [53] could prove
useful. There is still much work to do in producing
a performance-oriented identification/invalidation
method in order to select the simplest (synthesis) model
structure with fewest iterations.

It can be concluded that using complex models for
controller synthesis does not necessarily produce better
closed-loop performance. A reduced order model
simplifies considerably the numerical issues in con-
troller synthesis, particularly when more sophisticated
controllers are designed, e.g., time-varying LPV based
on Linear Matrix Inequality (LMI) computations.

Control-oriented models used in our work are the
ones described in [13], as well as the extensions in [14]
and [17]. To quantify the effectiveness of the controller
design model, the (unique) metric capable of quantify-
ing the closed-loop performance before the controller
is designed has been used: the so-called ν-gap. This
measure is briefly described in next subsection.

2.2. ν-gap metric

For LTI models, given a controller K and a model
P0, with K and P0 transfer matrices, a performance
measure/stability margin for the (stable) closed-loop
system (P0,K) is defined in [46] and [47] as:

bP0,K =

∥∥∥∥[P0

I

]
(I −KP0)

−1
[
−K I

]∥∥∥∥−1

∞
. (2)

where ‖.‖∞ indicates the H∞-norm [54]. A larger
bP0,K corresponds to a better performance/stability
margin, with the supremum bopt = supK bP0,K its
optimal value. An interesting property of the ν-gap
(see definition in [46]) is that any controller K stabi-
lizing P0 with bP0,K > β, also stabilizes the model
set {P : δν(P, P0) ≤ β}. In addition, the difference
in the closed-loop performance of a nominal model P0

and a perturbed model P for the same controller K
can be quantified in terms of δν(P, P0), i.e., the smaller
δν(P, P0), the closer their performances (see details in
[46, 47]). Therefore, this measure quantifies the dis-
tance between the closed-loop performance of two dif-
ferent loops without having to design a controller and
compare on a one-by-one basis.

In order to quantitatively estimate subjects’ in-
sulin sensitivity, a 1 U insulin bolus was applied to
each in silico adult of the distribution version of the
UVA/Padova simulator at a large number of different
steady-state glucose concentrations (operating points),
and the maximum unsaturated glucose decrease (glu-
cose drop) was captured in each case. As mentioned
before, steady-state glucose concentrations were
achieved by only accommodating the insulin infusion
rate. For each particular initial glucose concentration,
the corresponding initial states of the UVA/Padova
model were calculated, and the insulin infusion rate to
maintain that glucose level was determined. It is worth
remarking that no hypo-treatments, meal or suspension
of insulin have been considered under any circum-
stances. Consequently, the applied method to reach any
initial state cannot influence subsequent glucose drops.

The distribution version of the simulator has 11 adults
(one, Adult #11, is an average patient). Because Adult
#007 from the database has an insulin sensitivity that is
not coherent with its TDI, it has been excluded, leaving
10 subjects for the following analysis. In Fig. 2, the
glucose drop for each patient, and the mean values ex-
cluding Adult #007, are plotted along with the average
value of the 1800 rule. The explanation for the shapes
presented in this figure is the same as for Fig. 1. Note
that Adult #007 is the patient most sensitive to insulin,
despite having a TDI of 43 U, which is close to the
mean TDI dose of around 46 U. It is worth mentioning
that the Correction Factor (CF) implemented in the sim-
ulator follows the 1800 rule (1800/TDI), even though
it is stated (seemingly erroneously) in [23] that the
simulator’s CF is characterized according to 1700/TDI.

2.3. Average model
As shown in Fig. 2, the 1800 rule is only rendered

correct at 235 mg/dl. Hence, for each adult of the
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Figure 2: Glucose drop for each in silico adult (gray lines: Study
patients, red line: Adult #007) and the mean values excluding Adult
#007 (blue line) at different operating points after a 1 U insulin bolus.
The magenta dashed line indicates the average value resulting from
the 1800 rule.

UVA/Padova simulator, a linearized model from
the subcutaneous-insulin delivery (pmol/min) to the
subcutaneous-glucose concentration deviation (mg/dl)
is calculated at this operating point. Subsequently
one LTI model, based on the mean of the frequency
responses of each subject’s frequency response, is
identified. In order to obtain a simple low-order system,
a grey-box identification method was performed using
the Matlab System Identification ToolboxTM with the
following model structure:

G(s) = k
s+ z

(s+ p1)(s+ p2)(s+ p3)
e−15s. (3)

The identified parameters are k = −1.6788 × 10−5,
z = 0.1501, p1 = 0.0035, p2 = 0.0138, and p3 =
0.0143, achieving a 98.58% fitting. The goodness of
the fit expressed as a percentage has been obtained by:

FIT = 100

(
1− ‖yp − y‖

‖y − y‖

)
(4)

where y is the measured output data, y is its mean, yp is
the predicted output, and ‖.‖ indicates the 2-norm. Note
that the structure of model (3) is similar to the structure
of previous control-oriented models [13, 14, 17] that
have led to successful control as verified in clinical
trials. The objective of this paper is to improve on the
control performance via a superior model, but without
unnecessarily increasing the model order. In Fig. 3, the
Nyquist plots of both the average frequency response
and the identified model are depicted.

The bandwidth (BW) of a system is commonly
defined as the first frequency satisfying -3dB from
DC gain. Here, we use that definition to represent the
insulin sensitivity variation detected in Figs. 1 and 2,
by making the BW of the proposed model (3) vary

Re G(jw)
-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Im
 G

(j
w

)

-0.5

0

0.5

1

1.5

2

2.5

w = 0

Figure 3: Nyquist plots of the mean frequency response of the lin-
earized models (light-blue) and the identified LTI model (orange).

with subcutaneous-glucose concentration g [mg/dl]
appropriately. In this way, the average BW (denoted
BW) variation of the linearized models at different
glucose values was obtained, and fitted with a goodness
of fit of 91.23% accuracy by the following continuous,
piecewise polynomial function:

BW(g) = aig
3 + big

2 + cig + di (5)

where:

i =



1 if 300 mg/dl ≤ g
2 if 110 mg/dl ≤ g < 300 mg/dl
3 if 65 mg/dl ≤ g < 110 mg/dl
4 if 59 mg/dl ≤ g < 65 mg/dl
5 if g < 59 mg/dl.

(6)

In this way, data is adjusted with good accuracy without
the use of a high-order function. Results are illustrated
in Fig. 4, and parameter values are given in Table 1. It
should be remarked that here, the goodness of the fit has
been assessed considering a vector of glucose values
from 40 to 400 mg/dl (inclusive) in steps of 1 mg/dl.

According to Fig. 4, the average BW has a similar
shape to the average DC gain depicted in Fig. 1. For
example, in the region where the absolute value of the
gain is larger (between 65 and 80 mg/dl), the BW is
lower. Observe that, as shown in Figs. 1 and 4, there
is an abrupt change at 60 mg/dl. This behavior was
explained in the Introduction.

For fixed parameters, the DC gain of model (3) is
kz

p1p2p3
. We introduce a simple manner of replicating

the glucose dependent bandwidth, by allowing one
parameter, p1, to be selected and thereby reproduce
the measured values. A decrease in the model’s BW is
associated with a decrease in the value of p1, and as a
consequence, an increase in the absolute value of the
model’s static gain.
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Table 1: Parameter values of BW(g) of (5).

i ai bi ci di

1 0 0 −2.6291× 10−6 3.8947× 10−3

2 0 4.5505× 10−8 −2.8536× 10−5 7.5712× 10−3

3 −2.8294× 10−8 7.3020× 10−6 −5.6072× 10−4 1.5967× 10−2

4 0 0 −7.0925× 10−4 4.8702× 10−2

5 0 0 −5.7447× 10−6 7.1954× 10−3

Glucose concentration [mg/dl]
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Figure 4: Piecewise polynomial function of the average bandwidth
BW(g) (orange line), and average variation of the BW for the in silico
adults linearized at different glucose values (light-blue line). Vertical
lines represent the average BW ± 1 STD.

The next step is to characterize the dependence of
parameter p1 on glucose g in order to make the BW
of model (3) coincide with the piecewise function
BW(g) for any given value of g. To this end, for a
glucose concentration g∗, a desired BW w∗ is defined
as BW(g∗). Then, parameter p1 is computed so that:∣∣∣∣jw∗z + 1

∣∣∣∣∣∣∣∣jw∗p1
+ 1

∣∣∣∣ ∣∣∣∣jw∗p2
+ 1

∣∣∣∣ ∣∣∣∣jw∗p3
+ 1

∣∣∣∣ = 10−3/20. (7)

Note that Eqn. (7) is normalized by its DC gain, and
that 10−3/20 is equivalent to −3 dB expressed in mag-
nitude units. Parameter p1 was calculated by repeating
this procedure for multiple values of g, and then fitting
with a 98.00% accuracy by the following function:

p1(g) = qig
3 + rig

2 + sig + ti (8)

with i defined as in Eqn. (6). Here, once again, a vector
of glucose from 40 to 400 mg/dl in steps of 1 mg/dl has
been used for assessing the goodness of the fit. Results
are illustrated in Fig. 5, and parameter values are given
in Table 2. It is worth remarking that it is not the change
in the bandwidth that affects the DC gain, but the change
in the parameter used to define the bandwidth (p1).

Table 2: Parameter values of p1(g) of (8).

i qi ri si ti

1 0 0 −3.4321× 10−6 4.4706× 10−3

2 0 9.0580× 10−8 −5.3562× 10−5 1.1357× 10−2

3 −4.2382× 10−8 1.1402× 10−5 −9.1676× 10−4 2.5849× 10−2

4 0 1.7321× 10−4 −2.3080× 10−2 7.7121× 10−1

5 0 0 −2.8336× 10−5 1.4083× 10−2
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Figure 5: Parameter p1 computed at different values of glucose con-
centration g (light-blue), and piecewise polynomial function p1(g)
(orange).

Finally, an average LPV model with the following
state-space representation can be obtained by including
the glucose-varying parameter p1(g) into the model
structure (3):

ẋ(t) = A(p1)x(t) +Bu∆(t) (9)
y∆(t) = Cx(t)

with

A(p1) =

0 1 0
0 0 1
0 −p2p3 −(p2 + p3)

 (10)

+p1

 0 0 0
0 0 0

−p2p3 −(p2 + p3) −1


B =

[
0 0 1

]T
, C = k

[
z 1 0

]
,

and with u∆(t) = u(t)− uop, and y∆(t) = y(t)− yop

being, respectively, the difference between the insulin
delivery input u(t) and the glucose deviation output
y(t) from the operating point {uop, yop}. Note that
model (9) is affine in the parameter p1(g), and that a
delay of 15 min should be added to the output (see (3)).
In addition, it is worth mentioning that if p1(g) is evalu-
ated at g = 235 mg/dl, it produces a result (0.0038) that
is slightly different from the value previously obtained
with the grey-box identification method (0.0035). Thus,
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Figure 6: Control loop to update gain k. It is composed of two blocks: the left-one that represents the PI controller, and right-one that represents
the methodology followed to capture the glucose drop. Concerning the latter, first, the LPV model is updated with the current value of k, then the
time-response to a 1 U insulin bolus is obtained, and finally, its minimum value (the glucose drop) is captured.
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Figure 7: Tuning procedure of parameter k for Adult #009. Left: Av-
erage model (light-blue line); nonlinear model (black dashed line);
set-point based on the 1800 rule (red dashed line). Right-top: Abso-
lute error between desired and actual glucose. Right-bottom: Evolu-
tion of parameter k.

in order to maintain coherence with the static gain of
the LTI model previously identified, the static gain of
the LTI model resulting from holding parameter p1

fixed at 0.0038 is consistently adjusted by modifying
the value of parameter k from −1.6788 × 10−5 to
−1.8244× 10−5.

2.4. Model tuning

As mentioned before, the interpatient variability
should be considered in modeling the insulin-glucose
dynamics, and in consequence, the model should
be tuned to each patient. To this end, the following
procedure is carried out. For each in silico Adult #j,
its TDI is selected from the UVA/Padova simulator
database, and defined as TDIj . Then, the 1800 rule,
i.e., 1800/TDIj , indicates the maximum glucose drop
to be reached by the personalized LPV model when
it is excited with a 1 U insulin bolus at a steady-state
glucose concentration g of 235 mg/dl. Finally, the
tuning method consists in computing a suitable gain k
that makes the model achieve that condition.

An intuitive and simple way to approach this problem
is by means of a control loop, like the one depicted
in Fig. 6, where a discrete Proportional-Integral (PI)
controller with transfer-function 3.5×10−7

(
1 + 1

z−1

)
is used to adjust the value of k. An analytical procedure
could also be used for this same purpose, but has not
been explored here. In summary, Fig. 6 represents a
basic closed-loop diagram, where:

• the reference is the glucose drop due to a 1
U insulin bolus indicated by the 1800 rule (-
1800/TDIj);

• the output is the glucose drop obtained with the
LPV model after a 1 U insulin bolus; and

• the gain k is the control signal.

The gain k is not continuously updated. First, the LPV
model is defined with the current value of k, which is
initialized with its average value k = −1.8244× 10−5.
Then, the open-loop response to a 1 U insulin bolus
is obtained, the operating point g = 235 mg/dl is sub-
tracted, and thereafter, the minimum value (the glucose
drop) is captured. The latter sequence is represented by
the larger block of the diagram. Finally, the reference is
compared with the obtained glucose drop, and if there
is a relative error greater than the predefined threshold
of 5 × 10−3, a new value of k is calculated by means
of the PI controller, closing the loop. As an example,
the process to obtain k for Adult #009 is illustrated in
Fig. 7. Finally, the personalized values of gain k for all
in silico adults are presented in Table 3.

3. Results

3.1. Open-loop comparison
For each of the 10 virtual adult patients of the

distribution version of the UVA/Padova simulator, an

7



Table 3: Personalized gain k for each in silico adult.

Adult #j k × 105 Adult #j k × 105

001 −1.7888 006 −1.0343
002 −1.7451 008 −1.4379
003 −1.4343 009 −2.2024
004 −2.1396 010 −1.5919
005 −1.8650 011 −1.8864
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Figure 8: Response to a 1 U insulin bolus starting from 100, 170 and
240 mg/dl for Adult #011, considering models (i) (orange), (ii) (light-
blue), (iii) (green), (iv) (red), (v) (magenta), and the UVA/Padova non-
linear model (black line).

insulin bolus of B U, with B ∈ {0.5, 1, 1.5}, was
applied at different operating points to test (i) the
personalized LPV model. A comparison with, (ii) the
average LTI model in (3), and (iii) the model presented
in [13], as well as (iv) and (v), the extensions described
in [14] and [17], respectively, are considered. As an
example, in Fig. 8, the response to a 1 U insulin bolus
of all those models starting at 100, 170 and 240 mg/dl
for Adult #011 (average patient) are depicted. It can be
observed that with 240 mg/dl as an operating point, the
average LTI and the proposed personalized LPV have
similar behavior. Nevertheless, the BW adjustment in
the LPV model provides a much better fit to the original
nonlinear model, when the concentration moves away
from that condition.

For each patient at each operating point, the RMSE
between the time-response of each control oriented
model (yp) and the nonlinear UVA/Padova model (y) to
an insulin bolus of B U is calculated as:

RMSE =
‖yp − y‖√

n
(11)

where ‖.‖ indicates the 2-norm, and n is the number of
samples. Here, in order to capture the complete glucose
variation from the operating point, n has been defined
as 2880, considering a sampling time of 1 min. Then,
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Figure 9: Normalized RMSE between the time-response of the
control-oriented models (i) (orange), (ii) (light-blue), (iii) (green), (iv)
(red), and (v) (magenta), and the nonlinear UVA/Padova description
to an insulin bolus of amplitude 0.5 U (above), 1 U (middle), and 1.5
U (below) at different operating points. The continuous lines indicate
the medians, and the red crosses the outliers. The vertical bars are
limited by the 25th and 75th percentiles.

the normalized RMSE (NRMSE) is computed as:

NRMSE =
RMSE

RMSEmax
(12)

with RMSEmax being the maximum RMSE obtained
for each value of B. In Fig. 9, the median value of the
normalized RMSE and its dispersion for all 10 patients
at different operating points are illustrated. It is worth
noting that the LPV model has the best fit for most of
the glucose concentration values that were considered.
The model in [14] also presents good performance in re-
gions where, according to Fig. 2, g does not tend to drop
significantly. This is because that model is less sensitive
to insulin than the others, and, as a consequence, is
compensated by an Insulin Feedback Loop (IFL) when
controlled. Instead, the average LTI model reaches its
best performance at large values of g, due to the fact
that it was identified at a high glucose level.
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Table 4: Model comparison in terms of the δν . Improvement is over model (3), the average LTI model.

Model [70-180] mg/dl [40-400] mg/dl
Average δν Improvement (%) Average δν Improvement (%)

(i) Proposed Personalized LPV model 0.1681 44.21 0.1599 30.10
(vi) Personalized LTI model 0.2566 14.84 0.2363 3.75
(ii) Average LTI model in (3) 0.3013 0.00 0.2455 0.00

(iii) Model presented in [13] 0.3044 -1.03 0.3357 -36.74
(v) Model described in [17] 0.4057 -34.65 0.4167 -69.74

(iv) Model described in [14] 0.4144 -37.54 0.5434 -121.34
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Figure 10: ν-gap δν between the UVA/Padova model linearized at
different glucose concentrations and models (i) (orange), (ii) (light-
blue), (iii) (green), (iv) (red), (v) (magenta), and (vi) (brown). The
continuous lines indicate the medians, and the red crosses the outliers.
The vertical bars are limited by the 25th and 75th percentiles.

3.2. Closed-loop comparison
The comparison of different model representations

of a physical system for simulation purposes is well
established, and has been explored in the previous
subsection. Nevertheless, when the model is intended
for controller design, the comparison is not so obvious.
A good model, i.e., one that fits adequately a set of
experimental data (in this case a Hi-Fi simulator as
the UVA/Padova one), does not necessarily provide a
good model for control design [45]. For this reason, we
have used the ν-gap metric δν [46, 47] that considers
the distance between two models according to their
achievable closed-loop performance (see Section 2.2).

Here, due to the fact that the UVA/Padova simulator
has been linearized at different glucose concentrations
g, the δν distance between each linearized model and
the personalized LPV description has been computed
as a function of g. For comparison purposes, the
distance between the simulator and models (i)-(vi),
where (vi) is the average LTI model (3) personalized by
its gain k using the 1800 rule, is also calculated. This
is illustrated in Fig. 10, where the median value of the
ν-gap and its dispersion for all 10 patients is depicted in
each case. Note that this figure indicates an important
improvement in (i), (ii) and (vi) with respect to the
other three models. In addition, among models (i), (ii)

and (vi), the improvement goes from (ii)→(vi)→(i),
being therefore, the tuned LPV model, the one with
the lowest δν . The main differences between them lie
in the glucose region [90, 180] mg/dl and at 50 mg/dl.
The average values, and the relative improvement with
respect to model (ii), are indicated in Table 4 for the
complete glucose range of [40, 400] mg/dl and for a
normal glucose target range of [70, 180] mg/dl.

Finally, note that although model (iv) presents less
RMSE than the other LTI models in several situations
according to Fig. 9, this does not imply that it is better
for designing glucose controllers, as reflected in Table 4.

4. Discussion

The LPV model presented in this work has been con-
sidered in the design of a switched Linear Quadratic
Gaussian (LQG) controller that has been successfully
tested on the complete in silico adult cohort of the
UVA/Padova metabolic simulator, and in the clinical
trial announced in [55].

Here, closed-loop simulations are presented, consid-
ering models (i), (iii), (iv) and (v) at the design stage.
However, note that a comparison of model (i) and any
other model cannot lead to a definitive proof of improve-
ment in closed-loop performance. In a way, it is similar
to the comparison of a robust controller with a nominal
one, e.g., H∞ vs. H2 optimal controllers. The perfor-
mance strongly depends on which model has been se-
lected to represent the physical system. If the worst case
model from the uncertainty set is selected and tested, the
nominal controller can be proven closed-loop unstable
while the robust control could provide a good perfor-
mance. Instead, if the nominal model used to design
the H2 optimal control is tested, then its performance
can be arbitrarily better than the robust controller, de-
pending of the size of the uncertainty set. Hence, a fair
comparison should be in terms of how the assumption
on the system representation has been expanded, e.g.,
from a nominal model to a set of models. Therefore,
several comments are in order to place the example into
an appropriate context.
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• The proposed personalized LPV model reflects the
time-varying and nonlinear nature of the problem,
which is not the case with the previous control-
oriented models.

• The previous fact allows to take advantage of this
more accurate description of the problem, there-
fore provides the possibility of designing, with an
adequate synthesis procedure, a controller that ex-
ploits this time-varying characteristic, and hence,
yield better performance. Of course, if the possi-
bility is not exploited the result could be worst.

• The result of the comparison always depends on
many factors, e.g., the design weights selected, as
in the case of robust vs. nominal controller tests as
described before.

In our case then, the assumption on the underlying dy-
namics has been expanded from LTI to LTV, in particu-
lar LPV.

In this example, the Matlab Robust Control
ToolboxTM was used to compute the controllers. A
switched LPV controller that switches between two
LPV controllers is synthesized considering model (i),
and a switched H∞ controller that switches between
twoH∞ controllers is obtained for each model (iii)-(v).
Both control strategies are composed of two controllers:
one conservative (controller 1) that performs slight
changes on the patient’s basal insulin infusion rate, and
one aggressive (controller 2) that is selected at the time
of meal ingestion to generate an insulin spike, and in
consequence, reduce postprandial hyperglycemia risks.

The switched LPV controller is designed following
the procedure presented in Section II.B in [17], but in
this case, with model (i) as the patient design model,
and with the following LTI performance and actuator
weights:

Wp(s) = 100
10s+ 1

1000s+ 1
(13)

Wu,k(s) =
αk

0.01s+ 1
(14)

where αk = {1, 0.035}. Thus, the actuator weight
Wu,1 related to controller 1 is defined more con-
servatively than the actuator weight Wu,2 related to
controller 2. The parameter p1 is constrained to lie with
the interval [0.0028, 0.013] based on the expected min-
imum and maximum glucose values (40-400 mg/dl)1.

1Actual blood glucose may go lower than 40 mg/dl and higher than

The same performance and actuator weights are used
for the H∞ controller design, but, in each case, the
augmented model is defined considering models (iii),
(iv), and (v), respectively. Because a continuous-time
synthesis procedure is followed, discrete-time models
(iii) and (iv) are converted to continuous-time models
at the design stage. However, in all cases, the control
system operates in discrete-time with a sample-period
Ts = 5 min, therefore the derived continuous-time
control law is converted to a discrete-time control law
later at implementation.

As mentioned before, controller 2 is applied only
at meal times to generate an insulin spike akin to the
standard open-loop basal-bolus treatment. The problem
at this point is how a meal-related situation is detected.
Here, a simple approach is followed where the meal
time is announced. This signal triggers the switched
controller from controller 1 to controller 2, which will
command the insulin infusion during 30 min. After
that controller 1 will automatically take over the insulin
delivery.

Closed-loop simulations start at midnight with the
patient’s basal glucose concentration at a constant
setpoint, and a meal of 50 g of carbohydrates is
ingested at 0700 h. In addition, CGM and a Continuous
Subcutaneous Insulin Infusion (CSII) pump are used
as sensor and actuator, respectively. The additive,
stochastic CGM noise is created with the same random
seed in all simulations for comparison purposes, and
the carry-over scheme described in [18] is applied
to the insulin command to accommodate the pump
discretization of 0.1 U.

The closed-loop responses for all in silico adults of
the distribution version of the UVA/Padova simulator
are presented in Fig. 11 and the Control Variability
Grid Analysis (CVGA) plots [56] are illustrated in
Fig. 12. In order to analyze the glucose variability, the
Blood Glucose Risk Index (BGRI) is calculated for
each case [57]. It is found that while for the closed-loop
responses obtained considering model (i), the BGRI is
1.3 on average, for models (iii), (iv), and (v), the BGRIs
are 2.6, 12.8, and 2.4, respectively, on average. Thus,
in this case, the best performance in terms of glucose
variability and risk of hypoglycemia is obtained with
the switched LPV controller. However, as discussed at
the beginning of this section, the main contribution here
is a controller design model that includes time-varying
characteristics of the original problem and that has a
good match with the system. This allows the possibility

400 mg/dl, however, current Continuous Glucose Monitoring (CGM)
devices return a measurement only with the interval [40, 400] mg/dl.
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Figure 11: Average closed-loop responses for all in silico adults of
the distribution version of the UVA/Padova model to a meal of 50 g at
0700 h, considering models (i) (orange), (iii) (green), (iv) (red), and
(v) (magenta). Above: The thick lines are the mean blood glucose
values, and the boundaries of the filled areas are the mean ±1 STD
values. Dashed lines (green and orange) represent the limits of the 70-
180 mg/dl and 70-250 mg/dl ranges. Below: Average insulin infusion.

of having a better performance, if an adequate design
procedure is used.

5. Conclusions

A control-oriented LPV model, based on the
UVA/Padova metabolic model, that is affine in the
parameter p1 was proposed. This parameter is itself
a more general function of the glucose level, which
can be measured in real-time. This anticipates a better
means of designing LPV controllers to achieve a higher
closed-loop performance in the T1DM control problem.
The main benefit of employing the proposed LPV
model is that the time-varying characteristics of the
problem dynamics can be considered at the control law
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Figure 12: CVGA plots of the closed-loop responses for all in silico
adults of the distribution version of the UVA/Padova model to a meal
of 50 g at 0700 h, considering models (i) (stars), (iii) (circles), (iv)
(squares), and (v) (diamonds).

synthesis stage. Therefore, the use of this model is
expected to induce a better closed-loop performance if
an appropriate control design procedure is applied.

The proposed, personalized LPV model was com-
pared to previous control-oriented models in an open-
loop fashion, by measuring the RMSE with the
UVA/Padova distribution version simulator. Also a
closed-loop comparison quantified by the ν-gap was
made. In both cases, the proposed personalized LPV
model achieved smaller errors, possibly due to the fact
that time-varying dynamics and a novel generalization
and re-interpretation of the well-known 1800 rule were
considered.

Finally, it is worth remarking that although the
UVA/Padova simulator has some limitations because
of the high-complex and uncertain dynamics associated
with T1DM, it has been accepted by the U.S. FDA as a
valid tool usable to test control algorithms for artificial
pancreas, and has itself been validated in clinical trials.
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