37 research outputs found

    CMB at 2x2 order: the dissipation of primordial acoustic waves and the observable part of the associated energy release

    Full text link
    Silk damping of primordial small-scale perturbations in the photon-baryon fluid due to diffusion of photons inevitably creates spectral distortions in the CMB. With the proposed CMB experiment PIXIE it might become possible to measure these distortions and thereby constrain the primordial power spectrum at comoving wavenumbers 50 Mpc^{-1} < k < 10^4 Mpc^{-1}. Since primordial fluctuations in the CMB on these scales are completely erased by Silk damping, these distortions may provide the only way to shed light on otherwise unobservable aspects of inflationary physics. A consistent treatment of the primordial dissipation problem requires going to second order in perturbation theory, while thermalization of these distortions necessitates consideration of second order in Compton scattering energy transfer. Here we give a full 2x2 treatment for the creation and evolution of spectral distortions due to the acoustic dissipation process, consistently including the effect of polarization and photon mixing in the free streaming regime. We show that 1/3 of the total energy (9/4 larger than previous estimates) stored in small-scale temperature perturbations imprints observable spectral distortions, while the remaining 2/3 only raises the average CMB temperature, an effect that is unobservable. At high redshift dissipation is mainly mediated through the quadrupole anisotropies, while after recombination peculiar motions are most important. During recombination the damping of the higher multipoles is also significant. We compute the average distortion for several examples using CosmoTherm, analyzing their dependence on parameters of the primordial power spectrum. For one of the best fit WMAP7 cosmologies, with n_S=1.027 and n_run=-0.034, the cooling of baryonic matter practically compensates the heating from acoustic dissipation in the mu-era. (abridged)Comment: 40 pages, 17 figures, accepted by MNRA

    Genetic polymorphisms and susceptibility to lung disease

    Get PDF
    Susceptibility to infection by bacterium such as Bacillus anthracis has a genetic basis in mice and may also have a genetic basis in humans. In the limited human cases of inhalation anthrax, studies suggest that not all individuals exposed to anthrax spores were infected, but rather, individuals with underlying lung disease, particularly asthma, sarcoidosis and tuberculosis, might be more susceptible. In this study, we determined if polymorphisms in genes important in innate immunity are associated with increased susceptibility to infectious and non-infectious lung diseases, particularly tuberculosis and sarcoidosis, respectively, and therefore might be a risk factor for inhalation anthrax. Examination of 45 non-synonymous polymorphisms in ten genes: p47phox (NCF1), p67phox (NCF2), p40phox (NCF4), p22phox (CYBA), gp91phox (CYBB), DUOX1, DUOX2, TLR2, TLR9 and alpha 1-antitrypsin (AAT) in a cohort of 95 lung disease individuals and 95 control individuals did not show an association of these polymorphisms with increased susceptibility to lung disease

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    Characterizing Prostate Cancer Risk Through Multi-Ancestry Genome-Wide Discovery of 187 Novel Risk Variants

    Get PDF
    The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups

    Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults

    Get PDF
    Height has an extremely polygenic pattern of inheritance. Genome-wide association studies (GWAS) have revealed hundreds of common variants that are associated with human height at genome-wide levels of significance. However, only a small fraction of phenotypic variation can be explained by the aggregate of these common variants. In a large study of African-American men and women (n = 14,419), we genotyped and analyzed 966,578 autosomal SNPs across the entire genome using a linear mixed model variance components approach implemented in the program GCTA (Yang et al Nat Genet 2010), and estimated an additive heritability of 44.7% (se: 3.7%) for this phenotype in a sample of evidently unrelated individuals. While this estimated value is similar to that given by Yang et al in their analyses, we remain concerned about two related issues: (1) whether in the complete absence of hidden relatedness, variance components methods have adequate power to estimate heritability when a very large number of SNPs are used in the analysis; and (2) whether estimation of heritability may be biased, in real studies, by low levels of residual hidden relatedness. We addressed the first question in a semi-analytic fashion by directly simulating the distribution of the score statistic for a test of zero heritability with and without low levels of relatedness. The second question was addressed by a very careful comparison of the behavior of estimated heritability for both observed (self-reported) height and simulated phenotypes compared to imputation R2 as a function of the number of SNPs used in the analysis. These simulations help to address the important question about whether today's GWAS SNPs will remain useful for imputing causal variants that are discovered using very large sample sizes in future studies of height, or whether the causal variants themselves will need to be genotyped de novo in order to build a prediction model that ultimately captures a large fraction of the variability of height, and by implication other complex phenotypes. Our overall conclusions are that when study sizes are quite large (5,000 or so) the additive heritability estimate for height is not apparently biased upwards using the linear mixed model; however there is evidence in our simulation that a very large number of causal variants (many thousands) each with very small effect on phenotypic variance will need to be discovered to fill the gap between the heritability explained by known versus unknown causal variants. We conclude that today's GWAS data will remain useful in the future for causal variant prediction, but that finding the causal variants that need to be predicted may be extremely laborious

    The Physics of the B Factories

    Get PDF

    Epidemiology and etiology of Parkinson’s disease: a review of the evidence

    Full text link

    The Large Array Survey Telescope -- Science Goals

    No full text
    The Large Array Survey Telescope (LAST) is designed to survey the variable and transient sky at high temporal cadence. The array is comprised of 48 F/2.2 telescopes of 27.9cm aperture, coupled to full-frame backside-illuminated cooled CMOS detectors with 3.763.76μ\mum pixels, resulting in a pixel scale of 1.25arcsec1.25\mathrm{arcsec}. A single telescope with a field of view of 7.4deg27.4\mathrm{deg}^2 reaches a 5σ5\sigma limiting magnitude of 19.619.6 in 2020s. LAST 48 telescopes are mounted on 12 independent mounts -- a modular design which allows us to conduct optimized parallel surveys. Here we provide a detailed overview of the LAST survey strategy and its key scientific goals. These include the search for gravitational-wave (GW) electromagnetic counterparts with a system that can cover the uncertainty regions of the next-generation GW detectors in a single exposure, the study of planetary systems around white dwarfs, and the search for near-Earth objects. LAST is currently being commissioned, with full scientific operations expected in mid 2023. This paper is accompanied by two complementary publications in this issue, giving an overview of the system (Ofek et al. 2023a) and of the dedicated data reduction pipeline (Ofek et al. 2023b)

    The Large Array Survey Telescope—Science Goals

    No full text
    The Large Array Survey Telescope (LAST) is designed to survey the variable and transient sky at high temporal cadence. The array is comprised of 48 F/2.2 telescopes of 27.9 cm aperture, coupled to full-frame backside-illuminated cooled CMOS detectors with 3.76 μm pixels, resulting in a pixel scale of 1.″25. A single telescope with a field of view of 7.4 deg2^{2} reaches a 5σ limiting magnitude of 19.6 in 20 s. LAST 48 telescopes are mounted on 12 independent mounts—a modular design which allows us to conduct optimized parallel surveys. Here we provide a detailed overview of the LAST survey strategy and its key scientific goals. These include the search for gravitational-wave (GW) electromagnetic counterparts with a system that can cover the uncertainty regions of the next-generation GW detectors in a single exposure, the study of planetary systems around white dwarfs, and the search for near-Earth objects. LAST is currently being commissioned, with full scientific operations expected in mid 2023. This paper is accompanied by two complementary publications in this issue, giving an overview of the system and of the dedicated data reduction pipeline
    corecore