151 research outputs found

    Acoustic Assessment of a Konjac–Carrageenan Tissue-Mimicking Material at 5–60 MHz

    Get PDF
    AbstractThe acoustic properties of a robust tissue-mimicking material based on konjac–carrageenan at ultrasound frequencies in the range 5–60 MHz are described. Acoustic properties were characterized using two methods: a broadband reflection substitution technique using a commercially available preclinical ultrasound scanner (Vevo 770, FUJIFILM VisualSonics, Toronto, ON, Canada), and a dedicated high-frequency ultrasound facility developed at the National Physical Laboratory (NPL, Teddington, UK), which employed a broadband through-transmission substitution technique. The mean speed of sound across the measured frequencies was found to be 1551.7 ± 12.7 and 1547.7 ± 3.3 m s−1, respectively. The attenuation exhibited a non-linear dependence on frequency, f (MHz), in the form of a polynomial function: 0.009787f2 + 0.2671f and 0.01024f2 + 0.3639f, respectively. The characterization of this tissue-mimicking material will provide reference data for designing phantoms for preclinical systems, which may, in certain applications such as flow phantoms, require a physically more robust tissue-mimicking material than is currently available

    Reproducibility of shear wave elastography measuresof the Achilles tendon.

    Get PDF
    OBJECTIVE To assess the reproducibility of shear wave elastography (SWE) measures in the Achilles tendon (AT) in vivo. MATERIALS AND METHODS Shear wave velocity (SWV) of 14 healthy volunteers [7 males, 7 females; mean age 26.5 ± 3.8 years, mean height 171.6 ± 10.9 cm, mean Victorian Institute of Sports Assessment Achilles questionnaire (VISA-A) score 99.4 ± 1.2] was measured with the foot relaxed and fixed at 90°. Data were collected over five consecutive measures and 5 consecutive days. RESULTS Mean SWV values ranged from 7.91 m/s-9.56 m/s ± 0.27-0.50 m/s. Coefficient of variation (CV), correlations and intra-class correlation coefficient (ICC) scores ranged from 2.9%-6.3%, 0.4-0.7 and 0.54-0.85 respectively. No significant differences were noted for longitudinal or transverse data with respect to protocol or time and no significant differences were noted for foot position in transverse data. Significant differences in SWV values were noted between foot positions for longitudinal scanning (p = <0.05), with a relaxed foot position providing SWV values on average 0.47 m/s faster than a fixed position. Increased reproducibility was obtained with the foot relaxed. ICC between operators was 0.70 for transverse and 0.80 for longitudinal scanning. CONCLUSIONS Reproducible SWE measures were obtained over a 1-h period as well as a period of 5 consecutive days with more reliable measures obtained from a longitudinal plane using a relaxed foot position. SWE also has a high level of agreement between operators making SWE a reproducible technique for quantitatively assessing the mechanical properties of the human AT in vivo

    National policy development for cotrimoxazole prophylaxis in Malawi, Uganda and Zambia: the relationship between Context, Evidence and Links

    Get PDF
    BACKGROUND: Several frameworks have been constructed to analyse the factors which influence and shape the uptake of evidence into policy processes in resource poor settings, yet empirical analyses of health policy making in these settings are relatively rare. National policy making for cotrimoxazole (trimethoprim-sulfamethoxazole) preventive therapy in developing countries offers a pertinent case for the application of a policy analysis lens. The provision of cotrimoxazole as a prophylaxis is an inexpensive and highly efficacious preventative intervention in HIV infected individuals, reducing both morbidity and mortality among adults and children with HIV/AIDS, yet evidence suggests that it has not been quickly or evenly scaled-up in resource poor settings. METHODS: Comparative analysis was conducted in Malawi, Uganda and Zambia, using the case study approach. We applied the 'RAPID' framework developed by the Overseas Development Institute (ODI), and conducted a total of 47 in-depth interviews across the three countries to examine the influence of context (including the influence of donor agencies), evidence (both local and international), and the links between researcher, policy makers and those seeking to influence the policy process. RESULTS: Each area of analysis was found to have an influence on the creation of national policy on cotrimoxazole preventive therapy (CPT) in all three countries. In relation to context, the following were found to be influential: government structures and their focus, donor interest and involvement, healthcare infrastructure and other uses of cotrimoxazole and related drugs in the country. In terms of the nature of the evidence, we found that how policy makers perceived the strength of evidence behind international recommendations was crucial (if evidence was considered weak then the recommendations were rejected). Further, local operational research results seem to have been taken up more quickly, while randomised controlled trials (the gold standard of clinical research) was not necessarily translated into policy so swiftly. Finally the links between different research and policy actors were of critical importance, with overlaps between researcher and policy maker networks crucial to facilitate knowledge transfer. Within these networks, in each country the policy development process relied on a powerful policy entrepreneur who helped get cotrimoxazole preventive therapy onto the policy agenda. CONCLUSIONS: This analysis underscores the importance of considering national level variables in the explanation of the uptake of evidence into national policy settings, and recognising how local policy makers interpret international evidence. Local priorities, the ways in which evidence was interpreted, and the nature of the links between policy makers and researchers could either drive or stall the policy process. Developing the understanding of these processes enables the explanation of the use (or non-use) of evidence in policy making, and potentially may help to shape future strategies to bridge the research-policy gaps and ultimately improve the uptake of evidence in decision making

    Critical thinking for 21st-century education: A cyber-tooth curriculum?

    Get PDF
    It is often assumed that the advent of digital technologies requires fundamental change to the curriculum and to the teaching and learning approaches used in schools around the world to educate this generation of “digital natives” or the “net generation”. This article analyses the concepts of 21st-century skills and critical thinking, to understand how these aspects of learning might contribute to a 21st-century education. The author argues that, although both critical thinking and 21st-century skills are indeed necessary in a curriculum for a 21st-century education, they are not sufficient, even in combination. The role of knowledge and an understanding of differing cultural perspectives and values indicate that education should also fit local contexts in a global world and meet the specific needs of students in diverse cultures. It should also fit the particular technical and historical demands of the 21st century in relation to digital skills

    Machines vs. Ensembles: Effective MAPK Signaling through Heterogeneous Sets of Protein Complexes

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author’s publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Despite the importance of intracellular signaling networks, there is currently no consensus regarding the fundamental nature of the protein complexes such networks employ. One prominent view involves stable signaling machines with well-defined quaternary structures. The combinatorial complexity of signaling networks has led to an opposing perspective, namely that signaling proceeds via heterogeneous pleiomorphic ensembles of transient complexes. Since many hypotheses regarding network function rely on how we conceptualize signaling complexes, resolving this issue is a central problem in systems biology. Unfortunately, direct experimental characterization of these complexes has proven technologically difficult, while combinatorial complexity has prevented traditional modeling methods from approaching this question. Here we employ rule-based modeling, a technique that overcomes these limitations, to construct a model of the yeast pheromone signaling network. We found that this model exhibits significant ensemble character while generating reliable responses that match experimental observations. To contrast the ensemble behavior, we constructed a model that employs hierarchical assembly pathways to produce scaffold-based signaling machines. We found that this machine model could not replicate the experimentally observed combinatorial inhibition that arises when the scaffold is overexpressed. This finding provides evidence against the hierarchical assembly of machines in the pheromone signaling network and suggests that machines and ensembles may serve distinct purposes in vivo. In some cases, e.g. core enzymatic activities like protein synthesis and degradation, machines assembled via hierarchical energy landscapes may provide functional stability for the cell. In other cases, such as signaling, ensembles may represent a form of weak linkage, facilitating variation and plasticity in network evolution. The capacity of ensembles to signal effectively will ultimately shape how we conceptualize the function, evolution and engineering of signaling networks

    VERITAS Observations of the Galactic Center Region at Multi-TeV Gamma-Ray Energies

    Full text link
    The Galactic Center (GC) region hosts a variety of powerful astronomical sources and rare astrophysical processes that emit a large flux of non-thermal radiation. The inner 375 pc x 600 pc region, called the Central Molecular Zone, is home to the supermassive black hole Sagittarius A*, massive cloud complexes, and particle accelerators such as supernova remnants. We present the results of our improved analysis of the very-high-energy (VHE) gamma-ray emission above 2 TeV from the GC using 125 hours of data taken with the VERITAS imaging-atmospheric Cherenkov telescope between 2010 and 2018. The central source VER J1745-290, consistent with the position of Sagittarius A*, is detected at a significance of 38 standard deviations above the background level (38σ)(38\sigma), and we report its spectrum and light curve. Its differential spectrum is consistent with a power law with exponential cutoff, with a spectral index of 2.120.17+0.222.12^{+0.22}_{-0.17}, a flux normalization at 5.3 TeV of 1.270.23+0.22×10131.27^{+0.22}_{-0.23}\times 10^{-13} TeV-1 cm-2 s-1, and cutoff energy of 10.02.0+4.010.0^{+4.0}_{-2.0} TeV. We also present results on the diffuse emission near the GC, obtained by combining data from multiple regions along the GC ridge which yield a cumulative significance of 9.5σ9.5\sigma. The diffuse GC ridge spectrum is best fit by a power law with a hard index of 2.19 ±\pm 0.20, showing no evidence of a cutoff up to 40 TeV. This strengthens the evidence for a potential accelerator of PeV cosmic rays being present in the GC. We also provide spectra of the other sources in our field of view with significant detections, composite supernova remnant G0.9+0.1 and HESS J1746-285.Comment: 19 pages, 8 figures, Accepted for publication in Astrophysical Journa
    corecore