529 research outputs found
Competition and Innovation: Evidence from Financial Services
In this paper we seek to contribute to the literature on competition and innovation by focusing on individual firms within the U.S. banking industry in the period 1984-2004. We measure innovation by estimating technology gaps and find evidence of an inverted-U relationship between competition and the technology gaps in banking. This finding is robust over several different specifications and is consistent with theoretical and empirical work by Aghion, Bloom, Blundell, Griffith, and Howitt (2005b). The optimal amount of innovation requires a slightly positive mark up. Also, we find that the U.S. banking industry as a whole has consolidated beyond this optimal innovation level and that state-level interstate banking deregulation has lowered innovation.competition, innovation, stochastic frontier analysis, technology gap ratio, banking
Inhomogeneous Big Bang Nucleosynthesis and Mutual Ion Diffusion
We present a study of inhomogeneous big bang nucleosynthesis with emphasis on
transport phenomena. We combine a hydrodynamic treatment to a nuclear reaction
network and compute the light element abundances for a range of inhomogeneity
parameters. We find that shortly after annihilation of electron-positron pairs,
Thomson scattering on background photons prevents the diffusion of the
remaining electrons. Protons and multiply charged ions then tend to diffuse
into opposite directions so that no net charge is carried. Ions with Z>1 get
enriched in the overdense regions, while protons diffuse out into regions of
lower density. This leads to a second burst of nucleosynthesis in the overdense
regions at T<20 keV, leading to enhanched destruction of deuterium and lithium.
We find a region in the parameter space at 2.1E-10<eta<5.2E-10 where
constraints
7Li/H<10^{-9.7} and D/H<10^{-4.4} are satisfied simultaneously.Comment: 9 pages, minor changes to match the PRD versio
Primordial nucleosynthesis with a varying fine structure constant: An improved estimate
We compute primordial light-element abundances for cases with fine structure
constant alpha different from the present value, including many sources of
alpha dependence neglected in previous calculations. Specifically, we consider
contributions arising from Coulomb barrier penetration, photon coupling to
nuclear currents, and the electromagnetic components of nuclear masses. We find
the primordial abundances to depend more weakly on alpha than previously
estimated, by up to a factor of 2 in the case of ^7Li. We discuss the
constraints on variations in alpha from the individual abundance measurements
and the uncertainties affecting these constraints. While the present best
measurements of primordial D/H, ^4He/H, and ^7Li/H may be reconciled pairwise
by adjusting alpha and the universal baryon density, no value of alpha allows
all three to be accommodated simultaneously without consideration of systematic
error. The combination of measured abundances with observations of acoustic
peaks in the cosmic microwave background favors no change in alpha within the
uncertainties.Comment: Phys. Rev. D accepted version; minor changes in response to refere
Cosmic Rays during BBN as Origin of Lithium Problem
There may be non-thermal cosmic rays during big-bang nucleosynthesis (BBN)
epoch (dubbed as BBNCRs). This paper investigated whether such BBNCRs can be
the origin of Lithium problem or not. It can be expected that BBNCRs flux will
be small in order to keep the success of standard BBN (SBBN). With favorable
assumptions on the BBNCR spectrum between 0.09 -- 4 MeV, our numerical
calculation showed that extra contributions from BBNCRs can account for the
Li abundance successfully. However Li abundance is only lifted an order
of magnitude, which is still much lower than the observed value. As the
deuteron abundance is very sensitive to the spectrum choice of BBNCRs, the
allowed parameter space for the spectrum is strictly constrained. We should
emphasize that the acceleration mechanism for BBNCRs in the early universe is
still an open question. For example, strong turbulent magnetic field is
probably the solution to the problem. Whether such a mechanism can provide the
required spectrum deserves further studies.Comment: 34 pages, 21 figures, published versio
Did Unilateral Divorce Laws Raise Divorce Rates? A Reconciliation and New Results: Comment
The seminal papers by Friedberg (1998) and Wolfers (2006) find a positive effect of the regulatory change in divorce laws on divorce rates. Their results are based on analytical weights to correct for heteroskedasticity (WLS). In contrast, the OLS regression results in this comment indicate that there is no evidence in favor of a positive significant relationship between the divorce law change and divorce rates if those weights are excluded. Estimates based on OLS and WLS always differ to some extent due to sampling error. However, the large discrepancies between our results and the results of Friedberg (1998) and Wolfers (2006) are an indication of functional form or model misspecification. The counterintuitive negative effect of the divorce law change on divorce rates in some of our and Wolfers. regression estimates are in line with this explanation. The results in this comment imply that economists and policy makers should be cautious when they interpret the results of Friedberg (1998) and Wolfers (2006) as evidence of an effect of the divorce law change on divorce rates. In particular, their results cannot be used to draw conclusions about the validation of the Coase theorem in a marital bargaining setting.Divorce
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
The dynamical control of subduction parameters on surface topography
he long-wavelength surface deflection of Earth's outermost rocky shell is mainly controlled by large-scale dynamic processes like isostasy or mantle flow. The largest topographic amplitudes are therefore observed at plate boundaries due to the presence of large thermal heterogeneities and strong tectonic forces. Distinct vertical surface deflections are particularly apparent at convergent plate boundaries mostly due to the convergence and asymmetric sinking of the plates. Having a mantle convection model with a free surface that is able to reproduce both realistic single-sided subduction and long-wavelength surface topography self-consistently, we are now able to better investigate this interaction. We separate the topographic signal into distinct features and quantify the individual topographic contribution of several controlling subduction parameters. Results are diagnosed by splitting the topographic signal into isostatic and residual components, and by considering various physical aspects like viscous dissipation during plate bending. Performing several systematic suites of experiments, we are then able to quantify the topographic impact of the buoyancy, rheology, and geometry of the subduction-zone system to each and every topographic feature at a subduction zone and to provide corresponding scaling laws. We identify slab dip and, slightly less importantly, slab buoyancy as the major agents controlling surface topography at subduction zones on Earth. Only the island-arc high and the back-arc depression extent are mainly controlled by plate strength. Overall, his modeling study sets the basis to better constrain deep-seated mantle structures and their physical properties via the observed surface topography on present-day Earth and back through time
Metal enrichment processes
There are many processes that can transport gas from the galaxies to their
environment and enrich the environment in this way with metals. These metal
enrichment processes have a large influence on the evolution of both the
galaxies and their environment. Various processes can contribute to the gas
transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy
interactions and others. We review their observational evidence, corresponding
simulations, their efficiencies, and their time scales as far as they are known
to date. It seems that all processes can contribute to the enrichment. There is
not a single process that always dominates the enrichment, because the
efficiencies of the processes vary strongly with galaxy and environmental
properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 17; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
- …
