We present a study of inhomogeneous big bang nucleosynthesis with emphasis on
transport phenomena. We combine a hydrodynamic treatment to a nuclear reaction
network and compute the light element abundances for a range of inhomogeneity
parameters. We find that shortly after annihilation of electron-positron pairs,
Thomson scattering on background photons prevents the diffusion of the
remaining electrons. Protons and multiply charged ions then tend to diffuse
into opposite directions so that no net charge is carried. Ions with Z>1 get
enriched in the overdense regions, while protons diffuse out into regions of
lower density. This leads to a second burst of nucleosynthesis in the overdense
regions at T<20 keV, leading to enhanched destruction of deuterium and lithium.
We find a region in the parameter space at 2.1E-10<eta<5.2E-10 where
constraints
7Li/H<10^{-9.7} and D/H<10^{-4.4} are satisfied simultaneously.Comment: 9 pages, minor changes to match the PRD versio