717 research outputs found

    Orthotropic Piezoelectricity in 2D Nanocellulose

    Full text link
    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present I\b{eta}-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D I\b{eta}-nanocellulose piezoelectric response, ~pm V-1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.Comment: 5 figures included. Supp. Mat. available on the online version: https://www.nature.com/articles/srep34616, Others on: http://www.nanowerk.com/nanotechnology-news/newsid=44806.ph

    Study based on electronic descriptors of the diastereoselective aza-diels-alder cycloaddition of [(1r)-10-(n,n-diethylsulfamoyl)isobornyl] 2h-azirine-3-carboxylate to e,e-1,4-diacetoxy-1,3-butadiene

    Get PDF
    Cycloaddition of chiral [(1R)-10-(N,N-diethylsulfamoyl)isobornyl] 2H-azirine-3-carboxylate to E,E-1,4-diacetoxy-1,3-butadiene shows complete diatereoselectivity giving a single cycloadduct (-)-(2S,5R,6R)-6-[(1R)-10-(N,N-diethylsulfamoyl)isobornyloxycarbonyl]-1-azabicyclo[4.1.0]hept-3-ene-2,5-diyldiacetate. Our main objective is to identify electronic/steric parameters capable of describing the observed tendencies of this reaction. The results of the calculations conclude that: even though the steric factors can play an important role at the initial steps of the reaction, at the transition states the behavior of several electronic parameters; like hardness, polarizability, aromaticity, charge transfer, etc is decisive enough to justify the obtained product. Finally, this work summarizes an exhaustive analysis of electronic descriptors and empirical reactivity principles, reaching a definitive and comprehensive explanation to the observed experimental result.Thanks to Fundação para a Ciência e Tecnologia (FCT) for partial financial support (project PTDC/QUI/67407/2006

    Unveiled electric profiles within hydrogen bonds suggest DNA base pairs with similar bond strengths

    Get PDF
    Electrical forces are the background of all the interactions occurring in biochemical systems. From here and by using a combination of ab-initio and ad-hoc models, we introduce the first description of electric field profiles with intrabond resolution to support a characterization of single bond forces attending to its electrical origin. This fundamental issue has eluded a physical description so far. Our method is applied to describe hydrogen bonds (HB) in DNA base pairs. Numerical results reveal that base pairs in DNA could be equivalent considering HB strength contributions, which challenges previous interpretations of thermodynamic properties of DNA based on the assumption that Adenine/Thymine pairs are weaker than Guanine/Cytosine pairs due to the sole difference in the number of HB. Thus, our methodology provides solid foundations to support the development of extended models intended to go deeper into the molecular mechanisms of DNA functioning

    Orthotropic Piezoelectricity in 2D Nanocellulose

    Get PDF
    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ∼pm V, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies

    New set of 2D/3D thermodynamic indices for proteins. A formalism based on "Molten Globule" theory

    Get PDF
    We define eight new macromolecular indices, and several related descriptors for proteins. The coarse grained methodology used for its deduction ensures its fast execution and becomes a powerful potential tool to explore large databases of protein structures. The indices are intended for stability studies, predicting Φ-values, predicting folding rate constants, protein QSAR/QSPR as well as protein alignment studies. Also, these indices could be used as scoring function in protein-protein docking or 3D protein structure prediction algorithms and any others applications which need a numerical code for proteins and/or residues from 2D or 3D format

    ProtDCal: A program to compute general-purpose-numerical descriptors for sequences and 3D-structures of proteins

    Get PDF
    Background: The exponential growth of protein structural and sequence databases is enabling multifaceted approaches to understanding the long sought sequence-structure-function relationship. Advances in computation now make it possible to apply well-established data mining and pattern recognition techniques to these data to learn models that effectively relate structure and function.

    Exploring general-purpose protein features for distinguishing enzymes and non-enzymes within the twilight zone

    Get PDF
    Background: Computational prediction of protein function constitutes one of the more complex problems in Bioinformatics, because of the diversity of functions and mechanisms in that proteins exert in nature. This issue is reinforced especially for proteins that share very low primary or tertiary structure similarity to existing annotated proteomes. In this sense, new alignment-free (AF) tools are needed to overcome the inherent limitations of classic alignment-based approaches to this issue. We have recently introduced AF protein-numerical-encoding programs (TI2BioP and ProtDCal), whose sequence-based features have been successfully applied to detect remote protein homologs, post-translational modifications and antibacterial peptides. Here we aim to demonstrate the applicability of 4 AF protein descriptor families, implemented in our programs, for the identification enzyme-like proteins. At the same time, the use of our novel family of 3D-structure-based descriptors is introduced for the first time. The Dobson & Doig (D&D) benchmark dataset is used for the evaluation of our AF protein descriptors, because of its proven structural diversity that permits one to emulate an experiment within the twilight zone of alignment-based methods (pair-wise identity <30%). The performance of our sequence-based predictor was further assessed using a subset of formerly uncharacterized proteins which currently represent a benchmark annotation dataset. Results: Four protein descriptor families (sequence-composition-based (0D), linear-topology-based (1D), pseudo-fold-topology-based (2D) and 3D-structure features (3D), were assessed using the D&D benchmark dataset. We show that only the families of ProtDCal's descriptors (0D, 1D and 3D) encode significant information for enzymes and non-enzymes discrimination. The obtained 3D-structure-based classifier ranked first among several other SVM-based methods assessed in this dataset. Furthermore, the model leveraging 1D descriptors, showed a higher success rate than EzyPred on a benchmark annotation dataset from the Shewanella oneidensis proteome. Conclusions: The applicability of ProtDCal as a general-purpose-AF protein modelling method is illustrated through the discrimination between two comprehensive protein functional classes. The observed performances using the highly diverse D&D dataset, and the set of formerly uncharacterized (hard-to-annotate) proteins of Shewanella oneidensis, places our methodology on the top range of methods to model and predict protein function using alignment-free approaches

    Measurement of the Splitting Function in &ITpp &ITand Pb-Pb Collisions at root&ITsNN&IT=5.02 TeV

    Get PDF
    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.Peer reviewe

    Measurement of nuclear modification factors of gamma(1S)), gamma(2S), and gamma(3S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The cross sections for ϒ(1S), ϒ(2S), and ϒ(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at √sNN = 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, RAA, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, RAA(ϒ(1S)) > RAA(ϒ(2S)) > RAA(ϒ(3S)). The suppression of ϒ(1S) is larger than that seen at √sNN = 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the RAA of ϒ(3S) integrated over pT, rapidity and centrality is 0.096 at 95% confidence level, which is the strongest suppression observed for a quarkonium state in heavy ion collisions to date. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.Peer reviewe

    Search for an L-mu - L-tau gauge boson using Z -> 4 mu events in proton-proton collisions at root s=13 TeV

    Get PDF
    A search for a narrow Z' gauge boson with a mass between 5 and 70 GeV resulting from an L-mu - L-tau U (1) local gauge symmetry is reported. Theories that predict such a particle have been proposed as an explanation of various experimental discrepancies, including the lack of a dark matter signal in direct-detection experiments, tension in the measurement of the anomalous magnetic moment of the muon, and reports of possible lepton flavor universality violation in B meson decays. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV is used, corresponding to an integrated luminosity of 77.3 fb(-1) recorded in 2016 and 2017 by the CMS detector at the LHC. Events containing four muons with an invariant mass near the standard model Z boson mass are analyzed, and the selection is further optimized to be sensitive to the events that may contain Z -> Z'mu mu -> 4 mu decays. The event yields are consistent with the standard model predictions. Upper limits of 10(-8)-10(-7) at 95% confidence level are set on the product of branching fractions B(Z -> Z'mu mu)B(Z' -> mu mu), depending on the Z' mass, which excludes a Z' boson coupling strength to muons above 0.004-0.3. These are the first dedicated limits on L-mu - L-tau models at the LHC and result in a significant increase in the excluded model parameter space. The results of this search may also be used to constrain the coupling strength of any light Z' gauge boson to muons. (C) 2019 The Author(s). Published by Elsevier B.V.Peer reviewe
    corecore