680 research outputs found

    GPU-based Online Track Reconstruction for the ALICE TPC in Run 3 with Continuous Read-Out

    Full text link
    In LHC Run 3, ALICE will increase the data taking rate significantly to 50 kHz continuous read-out of minimum bias Pb-Pb collisions. The reconstruction strategy of the online-offline computing upgrade foresees a first synchronous online reconstruction stage during data taking enabling detector calibration and data compression, and a posterior calibrated asynchronous reconstruction stage. Many new challenges arise, among them continuous TPC read-out, more overlapping collisions, no a priori knowledge of the primary vertex and of location-dependent calibration in the synchronous phase, identification of low-momentum looping tracks, and sophisticated raw data compression. The tracking algorithm for the Time Projection Chamber (TPC) will be based on a Cellular Automaton and the Kalman filter. The reconstruction shall run online, processing 50 times more collisions per second than today, while yielding results comparable to current offline reconstruction. Our TPC track finding leverages the potential of hardware accelerators via the OpenCL and CUDA APIs in a shared source code for CPUs and GPUs for both reconstruction stages. We give an overview of the status of Run 3 tracking including performance on processors and GPUs and achieved compression ratios.Comment: 8 pages, 7 figures, contribution to CHEP 2018 conferenc

    Track Reconstruction in the ALICE TPC using GPUs for LHC Run 3

    Full text link
    In LHC Run 3, ALICE will increase the data taking rate significantly to continuous readout of 50 kHz minimum bias Pb-Pb collisions. The reconstruction strategy of the online offline computing upgrade foresees a first synchronous online reconstruction stage during data taking enabling detector calibration, and a posterior calibrated asynchronous reconstruction stage. We present a tracking algorithm for the Time Projection Chamber (TPC), the main tracking detector of ALICE. The reconstruction must yield results comparable to current offline reconstruction and meet the time constraints like in the current High Level Trigger (HLT), processing 50 times as many collisions per second as today. It is derived from the current online tracking in the HLT, which is based on a Cellular automaton and the Kalman filter, and we integrate missing features from offline tracking for improved resolution. The continuous TPC readout and overlapping collisions pose new challenges: conversion to spatial coordinates and the application of time- and location dependent calibration must happen in between of track seeding and track fitting while the TPC occupancy increases five-fold. The huge data volume requires a data reduction factor of 20, which imposes additional requirements: the momentum range must be extended to identify low-pt looping tracks and a special refit in uncalibrated coordinates improves the track model entropy encoding. Our TPC track finding leverages the potential of hardware accelerators via the OpenCL and CUDA APIs in a shared source code for CPUs, GPUs, and both reconstruction stages. Porting more reconstruction steps like the remainder of the TPC reconstruction and tracking for other detectors will shift the computing balance from traditional processors to GPUs.Comment: 13 pages, 10 figures, proceedings to Connecting The Dots Workshop, Seattle, 201

    Dileptons and Direct Photons at SPS

    Full text link
    The study of dilepton and direct photon emission was one of the main topics of the experimental program at the SPS devoted to the search of signals for QGP formation. Three generations of experiments, Helios-3, NA38/NA50, CERES and NA60 measured e+e- or mu+mu- production in various colliding systems and at different energies. While lepton pair production in p-A collisions was found to be reasonably well described by the expected sources, all experiments observed in nuclear collisions an excess of the yield above the extrapolation from p-A. As a result of this joint experimental effort we have currently a large amount of information characterizing this excess: its mass spectrum over the full range from 0.2 GeV/c^2 up to the J/psi, its transverse momentum spectra including their mass dependence, its angular distributions, its dependence on collision centrality over the complete range etc. Putting together all this information leads to the conclusion that what we observe is the long-sought thermal radiation from the fireball.Comment: 8 pages, 6 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    Intermediate mass dimuon production in Indium-Indium collisions at the CERN SPS

    Get PDF
    We present preliminary results on the production of intermediate mass dimuons in 158 A·GeV In-In collisions at the CERN SPS. NA38 and NA50 observed a strong excess in this region in S-U and Pb-Pb interactions with respect to the dimuon production rate expected from p-A data. Thanks to the use of a pixel vertex tracker, NA60 can separate the prompt dimuons from the pairs resulting from open charm decays and show that the excess dimuons are of prompt origin

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF

    Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at root s=13 TeV

    Get PDF
    The pseudorapidity (eta) and transverse-momentum (p(T)) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy root s = 13 TeV. The pseudorapidity distribution in vertical bar eta vertical bar <1.8 is reported for inelastic events and for events with at least one charged particle in vertical bar eta vertical bar <1. The pseudorapidity density of charged particles produced in the pseudorapidity region vertical bar eta vertical bar <0.5 is 5.31 +/- 0.18 and 6.46 +/- 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 <p(T) <20 GeV/c and vertical bar eta vertical bar <0.8 for events with at least one charged particle in vertical bar eta vertical bar <1. The evolution of the transverse momentum spectra of charged particles is also investigated as a function of event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe
    corecore