246 research outputs found

    HST ultraviolet spectral energy distributions for three ultraluminous infrared galaxies

    Get PDF
    We present HST Faint Object Camera ultraviolet (230 nm and 140 nm) images of three ultraluminous infrared galaxies (ULIG: L_ir > 10^12 L_sun) selected from the IRAS Revised Bright Galaxy Sample. The purpose is to estimate spectral energy distributions (SEDs) to facilitate the identification of similar objects at high redshift in deep optical, infrared, and submm surveys. All three galaxies (VII Zw031 = IRAS F12112+0305, and IRAS F22491-1808) were well detected at 230 nm. Two of the three were marginally detected at 140 nm. The fluxes, together with ground-based optical and infrared photometry, are used to compute SEDs over a wide wavelength range. The measured SEDs drop from the optical to the ultraviolet, but the magnitude of the drop ranges from a factor of ~3 in IRAS F22491-1808 to a factor of ~100 in VIIZw031. This is most likely due to different internal extinctions. Such an interpretation is also suggested by extrapolating to ultraviolet wavelengths the optical internal extinction measured in VIIZw031. K-corrections are calculated to determine the colors of the sample galaxies as seen at high redshifts. Galaxies like VIIZw031 have very low observed rest-frame UV fluxes which means that such galaxies at high redshift will be extremely red or even missing in optical surveys. On the other hand, galaxies like IRAS F12112+0305 and IRAS F22491-1808, if seen at high redshift, would be sufficiently blue that they would not easily be distinguished from normal field galaxies, and therefore, identified as ULIGs. The implication is then that submillimeter surveys may be the only means of properly identifying the majority of ULIGs at high redshift.Comment: AJ in press, TeX, 23 pages, 7 tab, 17 figs available also (at higher resolution) from http://www.ast.cam.ac.uk~trentham/ufigs.htm

    An X-ray photoelectron spectroscopy investigation of chromium conversion coatings and chromium compounds

    Get PDF
    Hexavalent and trivalent chromium based conversion coatings on zinc electrodeposited steel have been investigated using X-ray photoelectron spectroscopy (XPS) with the aim of elucidating their film chemistry. Furthermore, a monochromatic Al Kα X-ray source was utilised and the spectra produced evaluated using curve fitting software to elucidate oxidation state information. In addition, a number of chromium compounds were investigated and used to complement the curve fitting analysis for the conversion coatings. High resolution Cr2p spectra from chromium compounds exhibited multiplet splitting for Cr2O3. Additional satellite emissions can also be observed for Cr2O3 and Cr(OH)3. Curve fitting of hexavalent chromium conversion coating (CCC) 2p3/2 spectra contained both Cr(VI) and Cr(III) species with the content of the former slightly higher when the X-ray beam take-off angle (TOA) was reduced to determine more surface specific information. The Cr(III) content was determined to be mainly composed of Cr(OH)3 with some Cr2O3. In comparison, trivalent CCCs were largely composed of Cr2O3 as opposed to Cr(OH)3. Survey scans of both coatings revealed that the trivalent CCCs had a higher relative zinc content

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Gravitational Lensing at Millimeter Wavelengths

    Full text link
    With today's millimeter and submillimeter instruments observers use gravitational lensing mostly as a tool to boost the sensitivity when observing distant objects. This is evident through the dominance of gravitationally lensed objects among those detected in CO rotational lines at z>1. It is also evident in the use of lensing magnification by galaxy clusters in order to reach faint submm/mm continuum sources. There are, however, a few cases where millimeter lines have been directly involved in understanding lensing configurations. Future mm/submm instruments, such as the ALMA interferometer, will have both the sensitivity and the angular resolution to allow detailed observations of gravitational lenses. The almost constant sensitivity to dust emission over the redshift range z=1-10 means that the likelihood for strong lensing of dust continuum sources is much higher than for optically selected sources. A large number of new strong lenses are therefore likely to be discovered with ALMA, allowing a direct assessment of cosmological parameters through lens statistics. Combined with an angular resolution <0.1", ALMA will also be efficient for probing the gravitational potential of galaxy clusters, where we will be able to study both the sources and the lenses themselves, free of obscuration and extinction corrections, derive rotation curves for the lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on "Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be published by Springer-Verlag 2002. Paper with full resolution figures can be found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g

    The complex physics of dusty star-forming galaxies at high redshifts as revealed by Herschel and Spitzer

    Get PDF
    We combine far-infrared photometry from Herschel (PEP/HerMES) with deep mid-infrared spectroscopy from Spitzer to investigate the nature and the mass assembly history of a sample of 31 luminous and ultraluminous infrared galaxies ((U)LIRGs) at z ∌ 1 and 2 selected in GOODS-S with 24ÎŒm fluxes between 0.2 and 0.5 mJy.We model the data with a self-consistent physical model (GRASIL) which includes a state-of-the-art treatment of dust extinction and reprocessing. We find that all of our galaxies appear to require massive populations of old (>1 Gyr) stars and, at the same time, to host a moderate ongoing activity of star formation (SFR 100M yr−1). The bulk of the stars appear to have been formed a few Gyr before the observation in essentially all cases. Only five galaxies of the sample require a recent starburst superimposed on a quiescent star formation history.We also find discrepancies between our results and those based on optical-only spectral energy distribution (SED) fitting for the same objects; by fitting their observed SEDs with our physical model we find higher extinctions (by ΔAV ∌ 0.81 and 1.14) and higher stellar masses (by Δlog(M ) ∌ 0.16 and 0.36 dex) for z ∌ 1 and z ∌ 2 (U)LIRGs, respectively. The stellar mass difference is larger for the most dust-obscured objects. We also find lower SFRs than those computed from LIR using the Kennicutt relation due to the significant contribution to the dust heating by intermediate-age stellar populations through “cirrus” emission (∌73% and ∌66% of the total LIR for z ∌ 1 and z ∌ 2 (U)LIRGs, respectively).Department of HE and Training approved lis

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Planck early results XIV : ERCSC validation and extreme radio sources

    Get PDF
    Peer reviewe

    Planck early results XVII : Origin of the submillimetre excess dust emission in the Magellanic Clouds

    Get PDF
    Peer reviewe
    • 

    corecore