40 research outputs found

    Molecular architecture of the Nup84–Nup145C–Sec13 edge element in the nuclear pore complex lattice

    Get PDF
    Nuclear pore complexes (NPCs) facilitate all nucleocytoplasmic transport. These massive protein assemblies are modular, with a stable structural scaffold supporting more dynamically attached components. The scaffold is made from multiple copies of the heptameric Y complex and the heteromeric Nic96 complex. We previously showed that members of these core subcomplexes specifically share an ACE1 fold with Sec31 of the COPII vesicle coat, and we proposed a lattice model for the NPC based on this commonality. Here we present the crystal structure of the heterotrimeric 134-kDa complex of Nup84–Nup145C–Sec13 of the Y complex. The heterotypic ACE1 interaction of Nup84 and Nup145C is analogous to the homotypic ACE1 interaction of Sec31 that forms COPII lattice edge elements and is inconsistent with the alternative 'fence-like' NPC model. We construct a molecular model of the Y complex and compare the architectural principles of COPII and NPC lattices.National Institutes of Health (U.S.) (Grant GM77537)Pew Charitable Trusts (Scholar Award

    The Yeast Nuclear Pore Complex and Transport Through It

    Get PDF
    Exchange of macromolecules between the nucleus and cytoplasm is a key regulatory event in the expression of a cell’s genome. This exchange requires a dedicated transport system: (1) nuclear pore complexes (NPCs), embedded in the nuclear envelope and composed of proteins termed nucleoporins (or “Nups”), and (2) nuclear transport factors that recognize the cargoes to be transported and ferry them across the NPCs. This transport is regulated at multiple levels, and the NPC itself also plays a key regulatory role in gene expression by influencing nuclear architecture and acting as a point of control for various nuclear processes. Here we summarize how the yeast Saccharomyces has been used extensively as a model system to understand the fundamental and highly conserved features of this transport system, revealing the structure and function of the NPC; the NPC’s role in the regulation of gene expression; and the interactions of transport factors with their cargoes, regulatory factors, and specific nucleoporins

    Efficient Nuclear Transport of Structurally Disturbed Cargo: Mutations in a Cargo Protein Switch Its Cognate Karyopherin

    Get PDF
    The Karyopherin (Kap) family of nuclear transport receptors enables trafficking of proteins to and from the nucleus in a precise, regulated manner. Individual members function in overlapping pathways, while simultaneously being very specific for their main cargoes. The details of this apparent contradiction and rules governing pathway preference remain to be further elucidated. S. cerevisiae Lhp1 is an abundant protein that functions as an RNA chaperone in a variety of biologically important processes. It localizes almost exclusively to the nucleus and is imported by Kap108. We show that mutation of 3 of the 275 residues in Lhp1 alters its import pathway to a Kap121-dependent process. This mutant does not retain wild-type function and is bound by several chaperones. We propose that Kap121 also acts as a chaperone, one that can act as a genetic buffer by transporting mutated proteins to the nucleus

    Role of the Ndc1 interaction network in yeast nuclear pore complex assembly and maintenance

    Get PDF
    The nuclear pore complex (NPC) mediates all nucleocytoplasmic transport, yet its structure and biogenesis remain poorly understood. In this study, we have functionally characterized interaction partners of the yeast transmembrane nucleoporin Ndc1. Ndc1 forms a distinct complex with the transmembrane proteins Pom152 and Pom34 and two alternative complexes with the soluble nucleoporins Nup53 and Nup59, which in turn bind to Nup170 and Nup157. The transmembrane and soluble Ndc1-binding partners have redundant functions at the NPC, and disruption of both groups of interactions causes defects in Ndc1 targeting and in NPC structure accompanied by significant pore dilation. Using photoconvertible fluorescent protein fusions, we further show that the depletion of Pom34 in cells that lack NUP53 and NUP59 blocks new NPC assembly and leads to the reversible accumulation of newly made nucleoporins in cytoplasmic foci. Therefore, Ndc1 together with its interaction partners are collectively essential for the biosynthesis and structural integrity of yeast NPCs

    The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly

    Get PDF
    We have established that two homologous nucleoporins, Nup170p and Nup157p, play an essential role in the formation of nuclear pore complexes (NPCs) in Saccharomyces cerevisiae. By regulating their synthesis, we showed that the loss of these nucleoporins triggers a decrease in NPCs caused by a halt in new NPC assembly. Preexisting NPCs are ultimately lost by dilution as cells grow, causing the inhibition of nuclear transport and the loss of viability. Significantly, the loss of Nup170p/Nup157p had distinct effects on the assembly of different architectural components of the NPC. Nucleoporins (nups) positioned on the cytoplasmic face of the NPC rapidly accumulated in cytoplasmic foci. These nup complexes could be recruited into new NPCs after reinitiation of Nup170p synthesis, and may represent a physiological intermediate. Loss of Nup170p/Nup157p also caused core and nucleoplasmically positioned nups to accumulate in NPC-like structures adjacent to the inner nuclear membrane, which suggests that these nucleoporins are required for formation of the pore membrane and the incorporation of cytoplasmic nups into forming NPCs
    corecore