275 research outputs found

    Dynamics of a deformable self-propelled particle under external forcing

    Full text link
    We investigate dynamics of a self-propelled deformable particle under external field in two dimensions based on the model equations for the center of mass and a tensor variable characterizing deformations. We consider two kinds of external force. One is a gravitational-like force which enters additively in the time-evolution equation for the center of mass. The other is an electric-like force supposing that a dipole moment is induced in the particle. This force is added to the equation for the deformation tensor. It is shown that a rich variety of dynamics appears by changing the strength of the forces and the migration velocity of self-propelled particle

    Neural circuitry of a polycystin-mediated hydrodynamic startle response for predator avoidance

    Get PDF
    This is the final version. Available on open access from eLife via the DOI in this recordStartle responses triggered by aversive stimuli including predators are widespread across animals. These coordinated whole-body actions require the rapid and simultaneous activation of a large number of muscles. Here we study a startle response in a planktonic larva to understand the whole-body circuit implementation of the behaviour. Upon encountering water vibrations, larvae of the annelid Platynereis close their locomotor cilia and simultaneously raise the parapodia. The response is mediated by collar receptor neurons expressing the polycystins PKD1-1 and PKD2-1. CRISPR-generated PKD1-1 and PKD2-1 mutant larvae do not startle and fall prey to a copepod predator at a higher rate. Reconstruction of the whole-body connectome of the collar-receptor-cell circuitry revealed converging feedforward circuits to the ciliary bands and muscles. The wiring diagram suggests circuit mechanisms for the intersegmental and left-right coordination of the response. Our results reveal how polycystin-mediated mechanosensation can trigger a coordinated whole-body effector response involved in predator avoidance.European Research CouncilDeutsche Forschungsgemein- schaftMarie Curie Intra-European fellowshipCentre for Ocean Lif

    Urbilaterian origin of paralogous GnRH and corazonin neuropeptide signalling pathways

    Get PDF
    This work was supported by funding from the China Scholarship Council (awarded to ST), Leverhulme Trust (grant RGP-2013-351, awarded to MRE), BBSRC (grant BB/M001644/1 awarded to MRE; grant BB/M001032/1 awarded to JHS) and a Company of Biologists (Journal of Experimental Biology) Travelling Fellowship awarded to MZ. IB is supported by a postdoctoral fellowship from the Research Foundation–Flanders (FWO)

    AIP4/Itch Regulates Notch Receptor Degradation in the Absence of Ligand

    Get PDF
    International audienceBACKGROUND:The regulation of Notch signaling heavily relies on ubiquitination events. Drosophila Su(dx), a member of the HECT family of ubiquitin-ligases, has been described as a negative regulator of Notch signaling, acting on the post-endocytic sorting of Notch. The mammalian ortholog of Su(dx), Itch/AIP4, has been shown to have multiple substrates, including Notch, but the precise events regulated by Itch/AIP4 in the Notch pathway have not been identified yet.METHODOLOGY/PRINCIPAL FINDINGS:Using Itch-/- fibroblasts expressing the Notch1 receptor, we show that Itch is not necessary for Notch activation, but rather for controlling the degradation of Notch in the absence of ligand. Itch is indeed required after the early steps of Notch endocytosis to target it to the lysosomes where it is degraded. Furthermore Itch/AIP4 catalyzes Notch polyubiquitination through unusual K29-linked chains. We also demonstrate that although Notch is associated with Itch/AIP4 in cells, their interaction is not detectable in vitro and thus requires either a post-translational modification, or a bridging factor that remains to be identified.CONCLUSIONS/SIGNIFICANCE:Taken together our results identify a specific step of Notch regulation in the absence of any activation and underline differences between mammalian and Drosophila Notch pathways

    Bodily Complexity:Integrated Multicellular Organizations for Contraction-Based Motility

    Get PDF
    Compared to other forms of multicellularity, the animal case is unique. Animals—barring some exceptions—consist of collections of cells that are connected and integrated to such an extent that these collectives act as unitary, large free-moving entities capable of sensing macroscopic properties and events. This animal configuration is so well known that it is often taken as a natural one that ‘must’ have evolved, given environmental conditions that make large free-moving units ‘obviously’ adaptive. Here we question the seemingly evolutionary inevitableness of animals and introduce a thesis of bodily complexity: The multicellular organization characteristic for typical animals requires the integration of a multitude of intrinsic bodily features between its sensorimotor, physiological, and developmental aspects, and the related contraction-based tissue- and cellular-level events and processes. The evolutionary road toward this bodily complexity involves, we argue, various intermediate organizational steps that accompany and support the wider transition from cilia-based to contraction/muscle-based motility, and which remain insufficiently acknowledged. Here, we stress the crucial and specific role played by muscle-based and myoepithelial tissue contraction—acting as a physical platform for organizing both the multicellular transmission of mechanical forces and multicellular signaling—as key foundation of animal motility, sensing and maintenance, and development. We illustrate and discuss these bodily features in the context of the four basal animal phyla—Porifera, Ctenophores, Placozoans, and Cnidarians—that split off before the bilaterians, a supergroup that incorporates all complex animals

    Evolutionary origin of synapses and neurons – Bridging the gap

    Get PDF
    The evolutionary origin of synapses and neurons is an enigmatic subject that inspires much debate. Non-bilaterian metazoans, both with and without neurons and their closest relatives already contain many components of the molecular toolkits for synapse functions. The origin of these components and their assembly into ancient synaptic signaling machineries are particularly important in light of recent findings on the phylogeny of non-bilaterian metazoans. The evolution of synapses and neurons are often discussed only from a metazoan perspective leaving a considerable gap in our understanding. By taking an integrative approach we highlight the need to consider different, but extremely relevant phyla and to include the closest unicellular relatives of metazoans, the ichthyosporeans, filastereans and choanoflagellates, to fully understand the evolutionary origin of synapses and neurons. This approach allows for a detailed understanding of when and how the first pre- and postsynaptic signaling machineries evolved

    Functional Interactions between the erupted/tsg101 Growth Suppressor Gene and the DaPKC and rbf1 Genes in Drosophila Imaginal Disc Tumors

    Get PDF
    BACKGROUND: The Drosophila gene erupted (ept) encodes the fly homolog of human Tumor Susceptibility Gene-101 (TSG101), which functions as part of the conserved ESCRT-1 complex to facilitate the movement of cargoes through the endolysosomal pathway. Loss of ept or other genes that encode components of the endocytic machinery (e.g. synatxin7/avalanche, rab5, and vps25) produces disorganized overgrowth of imaginal disc tissue. Excess cell division is postulated to be a primary cause of these 'neoplastic' phenotypes, but the autonomous effect of these mutations on cell cycle control has not been examined. PRINCIPAL FINDINGS: Here we show that disc cells lacking ept function display an altered cell cycle profile indicative of deregulated progression through the G1-to-S phase transition and express reduced levels of the tumor suppressor ortholog and G1/S inhibitor Rbf1. Genetic reductions of the Drosophila aPKC kinase (DaPKC), which has been shown to promote tumor growth in other fly tumor models, prevent both the ept neoplastic phenotype and the reduction in Rbf1 levels that otherwise occurs in clones of ept mutant cells; this effect is coincident with changes in localization of Notch and Crumbs, two proteins whose sorting is altered in ept mutant cells. The effect on Rbf1 can also be blocked by removal of the gamma-secretase component presenilin, suggesting that cleavage of a gamma-secretase target influences Rbf1 levels in ept mutant cells. Expression of exogenous rbf1 completely ablates ept mutant eye tissues but only mildly affects the development of discs composed of cells with wild type ept. CONCLUSIONS: Together, these data show that loss of ept alters nuclear cell cycle control in developing imaginal discs and identify the DaPKC, presenilin, and rbf1 genes as modifiers of molecular and cellular phenotypes that result from loss of ept

    Evolutionary origin of synapses and neurons - Bridging the gap

    Get PDF
    The evolutionary origin of synapses and neurons is an enigmatic subject that inspires much debate. Non-bilaterian metazoans, both with and without neurons and their closest relatives already contain many components of the molecular toolkits for synapse functions. The origin of these components and their assembly into ancient synaptic signaling machineries are particularly important in light of recent findings on the phylogeny of non-bilaterian metazoans. The evolution of synapses and neurons are often discussed only from a metazoan perspective leaving a considerable gap in our understanding. By taking an integrative approach we highlight the need to consider different, but extremely relevant phyla and to include the closest unicellular relatives of metazoans, the ichthyosporeans, filastereans and choanoflagellates, to fully understand the evolutionary origin of synapses and neurons. This approach allows for a detailed understanding of when and how the first pre- and postsynaptic signaling machineries evolved
    • …
    corecore