466 research outputs found

    Investigating the molecular etiologies of sporadic ALS (sALS) using RNA-Sequencing

    Get PDF
    ALS is an often lethal disease involving degeneration of motor neurons in the brain and spinal cord. Current treatments only extend life by several months, and novel therapies are needed. We combined RNA-Sequencing, systems biology analyses, and molecular biology assays to elucidate sporadic ALS group-specific differences in postmortem cervical spinal sections (7 sALS and 8 control samples) that may be relevant to disease pathology. \u3e55 million 2X150 RNA-sequencing reads per sample were generated and processed. In Chapter 2, we used bioinformatics tools to identify nuclear differentially expressed genes (DEGs) between our two groups. Further, we used Weighted Gene Co-Expression Network Analysis to identify gene co-expression networks associated with disease status. Qiagen’s Ingenuity Pathway Analysis revealed our sALS group-specific DEGs and a sALS group-specific gene co-expression network were associated with inflammatory processes and TNF-α signaling. Further, TNFAIP2 was identified as a sALS group-specific upregulated DEG and a network hub gene within that network. We hypothesized TNFAIP2’s upregulation in our ALS samples reflected increased TNF-α signaling and that TNFAIP2 promoted motor neuron death via TNF superfamily apoptotic pathways. Transient overexpression of TNFAIP2 decreased cell viability in both neural stem cells and induced pluripotent stem cell-derived motor neurons. Further, inhibition of activated caspase 9 (a protein necessary for TNF superfamily mitochondrial-mediated apoptosis) reversed this effect in neural stem cells. In Chapters 3 and 4, we used bioinformatics tools to identify sALS group-specifc mitochondrial DEGs and differentially used exons (DUEs). Qiagen’s Ingenuity Pathway Analysis revealed our sALS group-specific DUEs were associated with cholesterol biosynthesis

    Structural elucidation of a common architecture of the nuclear pore complex and COPIl vesicle coats

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 156-169).Nuclear pore complexes (NPCs) are massive protein assemblies that perforate the nuclear envelope and form the exclusive passageway for nucleocytoplasmic transport. NPCs play critical roles in molecular transport and a myriad of other cellular processes. Elucidation of the structure of the NPC is thus expected to provide important insight into cell biology. In this thesis, I investigate the structure of a key subcomplex of the NPC and discuss the evolutionary relationship between the NPC and COPIl vesicle coats it illustrates. The NPC is a modular assembly, with a stable structural scaffold supporting dynamically attached components. The structural scaffold is constructed from multiple copies of the Y-shaped complex and the Nic96 complex. We solved the crystal structure of the heterodimeric Nup85-Sehl module that forms a short arm in the Y complex. Nup85 is found to contain a conserved fold, the ancestral coatomer element 1 (ACE1), also present in three other components of the NPC and in the COPI vesicle coat, providing structural evidence of coevolution from a common ancestor. Sec3l ACE1 units interact to form edge elements in the COPI lattice. Using structural knowledge of this edge element, we identified corresponding interactions between ACE1 proteins Nup84 and Nup145C in the NPC. We solved the crystal structure of the heterotrimeric Nup84-Nupl 45C-Secl 3 module that forms the top of the long arm in the Y complex. The heterotypic ACE1 interaction of Nup145C and Nup84 is analogous to the homotypic Sec31 edge element interaction in the COPIl coat. From these and other structures, we assemble a near complete structural model of the Y complex. Further, based on the demonstrated relationship with the COPIl coatomer lattice, we propose a lattice model for the entire NPC scaffold. The common architectural principles of the edge elements in the NPC and COPI lead us to predict that Y complexes will be arranged as struts in the NPC lattice. In this manner, Nup84-Nup145C edge elements are arranged parallel to the transport axis to stabilize the positively curved nuclear envelope. From a lattice model of the NPC follow hypotheses for how other components are integrated into and function within the NPC.by Stephen Graf Brohawn.Ph.D

    The nuclear pore complex has entered the atomic age

    Get PDF
    Nuclear pore complexes (NPCs) perforate the nuclear envelope and represent the exclusive passageway into and out of the nucleus of the eukaryotic cell. Apart from their essential transport function, components of the NPC have important, direct roles in nuclear organization and in gene regulation. Because of its central role in cell biology, it is of considerable interest to determine the NPC structure at atomic resolution. The complexity of these large, 40–60 MDa protein assemblies has for decades limited such structural studies. More recently, exploiting the intrinsic modularity of the NPC, structural biologists are making progress toward understanding this nanomachine in molecular detail. Structures of building blocks of the stable, architectural scaffold of the NPC have been solved, and distinct models for their assembly proposed. Here we review the status of the field and lay out the challenges and the next steps toward a full understanding of the NPC at atomic resolution.Pew Charitable Trusts (Scholars Program)National Institutes of Health (U.S.) (Grant GM077537

    The structure of the scaffold nucleoporin Nup120 reveals a new and unexpected domain architecture

    Get PDF
    Nucleocytoplasmic transport is mediated by nuclear pore complexes (NPCs), enormous protein assemblies residing in circular openings in the nuclear envelope. The NPC is modular, with transient and stable components. The stable core is essentially built from two multiprotein complexes, the Y-shaped heptameric Nup84 complex and the Nic96 complex, arranged around an eightfold axis. We present the crystal structure of Nup120[subscript 1-757], one of the two short arms of the Y-shaped Nup84 complex. The protein adopts a compact oval shape built around a novel bipartite α-helical domain intimately integrated with a β-propeller domain. The domain arrangement is substantially different from the Nup85•Seh1 complex, which forms the other short arm of the Y. With the data presented here, we establish that all three branches of the Y-shaped Nup84 complex are tightly connected by helical interactions and that the β-propellers likely form interaction site(s) to neighboring complexes.National Institutes of Health (U.S.) (Grant GM77537)Pew Charitable Trusts (Scholar Award

    Acetylated tubulin is essential for touch sensation in mice

    Get PDF
    At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the a-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking a-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, atubulin acetylation sets the force required for touch
    corecore