920 research outputs found

    Nowa seria wydawnicza Politechniki Warszawskiej "Technika Akceleratorowa"

    Get PDF
    The new Editorial Series of short research and didactic monographs on “Accelerator Technology” or in Polish “Technika Akceleratorowa” is devoted to all aspects of the research, design, construction, testing, commissioning and exploitation of very complex components and apparatus for particle accelerators, detectors, energy and particle sources, astrophysics and high energy physics experiments. A short, symbolic, title of the editorial series “Accelerator Technology”, embraces a large and flourishing branch of scientific activity. The monographs to be published in the series will be around 100 pages, usually not exceeding 150, and will provide a very concise and in depth discussion of relevant, narrowly defined topics. The books will be published in English, usually by international experts. They are mainly intended for students as well as young and new to the field engineers and physicists, as a fast start up for further and more advanced studies. The books originally stem from the EU FP6 CARE Project - Coordination of Accelerator Research in Europe and are successfully continued in the EU FP7 EuCARD Project - European Coordination of Accelerator Research. The editorial series was initiated by dr Roy Aleksan of CEA. The books were added to the EuCARD as a contractual item

    Realization of CARE and EuCARD Projects in ISE-WUT, Accelerator and FEL Research, Development and Applications in Europe

    Get PDF
    There are described coordinating actions of the accelerator science in Europe in 2003-2009. The actions embrace basic science, as well as development and applications. The accelerator research was not coordinated in Europe at a global scale but was rather concentrated in a few centers owning large infrastructure. These centers include: CERN, DESY, GSI, INFN, LAL, PSI etc. Such coordinating actions enable a lot of positive processes including new possibilities for research centers in this country. It is much easier for them to extend, deepen or even start from the beginning their activities in the field of the accelerator technology. This field includes also free electron lasers. There are described two European framework projects CARE and EuCARD on accelerator technology, their extent and the participation of ISE WUT in them

    Towards the Data Processing Boards for CBM experiment

    Get PDF

    Synthesis and characterisation of nanocrystalline ZrN PVD coatings on AISI 430 stainless steel

    Get PDF
    The nanocrystalline films of zirconium nitride have been synthesized using ion-plasma vacuum-arc deposition technique in combination with high-frequency discharge (RF) on AISI 430 stainless steel at 150oC. Structure examinations X-ray fluorescent analysis (XRF), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) with microanalysis (EDS), and transmission electron microscopy (TEM), nanoidentation method – were performed to study phase and chemical composition, surface morphology, microstructure and nanohardness of coatings. The developed technology provided low-temperature coatings synthesis, minimized discharge breakdown decreasing formation of macroparticles (MPs) and allowed to deposit ZrN coatings with hardness variation 26.6…31.5 GPa. It was revealed that ZrN single-phase coatings of cubic modification with finecrystalline grains of 20 nm in size were formed

    Investigation of the quasifission process by theoretical analysis of experimental data of fissionlike reaction products

    Get PDF
    The fusion excitation function is the important quantity in planning experiments for the synthesis of superheavy elements. Its values seem to be determined by the experimental study of the hindrance to complete fusion by the observation of mass, angular and energy distributions of the fissionlike fragments. There is ambiguity in establishment of the reaction mechanism leading to the observed binary fissionlike fragments. The fissionlike fragments can be produced in the quasifission, fast fission, and fusion-fission processes which have overlapping in the mass (angular, kinetic energy) distributions of fragments. The branching ratio between quasifission and complete fusion strongly depends on the characteristics of the entrance channel. In this paper we consider a wide set of reactions (with different mass asymmetry and mass symmetry parameters) with the aim to explain the role played by many quantities on the reaction mechanisms. We also present the results of study of the 48^{48}Ca+249^{249}Bk reaction used to synthesize superheavy nuclei with Z = 117 by the determination of the evaporation residue cross sections and the effective fission barriers of excited nuclei formed along the de-excitation cascade of the compound nucleus.Comment: 21 pages, 15 figures, 2 table

    Phylogenetic and Molecular Characterization of a 23S Ribosomal-Rna Gene Positions the Genus Campylobacter in the Epsilon-Subdivision of the Proteobacteria and Shows That the Presence of Transcribed Spacers Is Common in Campylobacter Spp

    Get PDF
    The nucleotide sequence of a 23S rRNA gene of Campylobacter coli VC167 was determined. The primary sequence of the C. coli 23S rRNA was deduced, and a secondary-structure model was constructed. Comparison with Escherichia coli 23S rRNA showed a major difference in the C. coli rRNA at approximately position 1170 (E. coli numbering) in the form of an extra sequence block approximately 147 bp long. PCR analysis of 31 other strains of C. coli and C. jejuni showed that 69% carried a transcribed spacer of either ca, 147 or ca. 37 bp. Comparison of all sequenced Campylobacter transcribed spacers showed that the Campylobacter inserts were related in sequence and percent G+C content. All Campylobacter strains carrying transcribed spacers in their 23S rRNA genes produced fragmented 23S rRNAs. Other strains which produced unfragmented 23S rRNAs did not appear to carry transcribed spacers at this position in their 23S rRNA genes. At the 1850 region (E. coli numbering), Campylobacter 23S rRNA displayed a base pairing signature most like that of the beta and gamma subdivisions of the class Proteobacteria, but in the 270 region, Campylobacter 23S rRNA displayed a helix signature which distinguished it from the alpha, beta, and gamma subdivisions. Phylogenetic analysis comparing C. coli VC167 23S rRNA and a C. jejuni TGH9011 (ATCC 43431) 23S rRNA with 53 other completely sequenced (eu)bacterial 23S rRNAs showed that the two campylobacters form a sister group to the alpha, beta, and gamma proteobacterial 23S rRNAs, a positioning consistent with the idea that the genus Campylobacter belongs to the epsilon subdivision of the class Proteobacteria

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Development of accelerator technology in Poland, Impact of European CARE and EuCARD projects

    Get PDF
    The development of accelerator technology in Poland is strictly combined with the cooperation with specialist accelerator centers of global character, where the relevant knowledge is generated, allowing to build big and modern machines. These are relatively costly undertakings of interdisciplinary character. Most of them are financed from the local resources. Only the biggest machines are financed commonly by many nations like: LHC in CERN, ILC in Fermi Lab, E-XFEL in DESY. A similar financing solution has to be implemented in Poland, where a scientific and political campaign is underway on behalf of building two big machines, a Polish Synchrotron in Kraków and a Polish FEL in Świerk. Around these two projects, there are realized a dozen or so smaller ones

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore