42 research outputs found

    Stem Growth of Horse Chestnut (Aesculus hippocastanum L.) under a Warming Climate-Tree Age Matters

    Get PDF
    This research provides new information about the effect of drought on horse chestnut growth (Aesculus hippocastanum L.) in different ages. Global climatic scenarios predict a higher frequency of heatwaves and drought periods; however, investigations into the growth reaction of horse chestnut to drought are completely lacking. Approximately 50-year-old solitary, 100-year-old solitary, and 100-year-old canopy horse chestnut trees in a floodplain area were investigated. Growth reactions measured using automated dendrometers with respect to meteorological variables and water table depth were investigated during the years 2019-2021. Cambial activity was shown to be driven by tree age, as younger trees had higher stem radial increment rates. Both mature tree groups suffered from a low depth of water level and from higher sensitivity to meteorological variables, as growth was limited when mean daily vapor pressure deficit (VPD) exceeded 600 Pa. Together with a lower probability of growing days and a shorter growing season (GS) with earlier cessation of growth resulted in a lower total year radial increment (GRO) and basal area increment (BAI) when compared to younger trees. The young trees also exhibited lower tree-water-deficit-induced stem shrinkage (TWD) across all the studied years. Overall, horse chestnut trees in this floodplain area could be endangered by the decreasing level of soil water, with a greater age exacerbating the effects of drought. The year water deficit exceeded MINUS SIGN 340 mm in this locality every year, which has to be compensated for by regular flooding.O

    Structural changes caused by selective logging undermine the thermal buffering capacity of tropical forests

    Get PDF
    Selective logging is responsible for approximately 50 % of human-induced disturbances in tropical forests. The magnitude of disturbances from logging on the structure of forests varies widely and is associated with a multitude of impacts on the forest microclimate. However, it is still unclear how changes in the spatial arrangement of vegetation arising from selective logging affect the capacity of forests to buffer large-scale climate (i.e., macroclimate) variability. In this study, we leveraged hundreds of terrestrial LiDAR measurements across tropical forests in Malaysian Borneoto quantify the impacts of logging on canopy structural traits, using a space-for-time approach. This information was combined with locally measured microclimate temperatures of the forest understory to evaluate how logging disturbances alter the capacity of tropical forests to buffer macroclimate variability. We found that heavily logged forests were approximately 12 m shorter and had 65 % lower plant area density than unlogged forests, with most plant material allocated in the first 10 m above ground. Heavily logged forests were on average 1.5 °C warmer than unlogged forests. More strikingly, we show that subtle changes in the forest structure were sufficient to reduce the cooling capacity of forests during extremely warm days (e.g., anomalies > 2σ), while understory temperatures in heavily logged forests were often warmer than the macroclimate under the same conditions. Our results thus demonstrate that selective logging is associated with substantial changes in the fine-scale thermal regime of the understory. Hence, mitigating and managing logging disturbances will be critical for maintaining niches and thermal limits within tropical forests in the future

    Novel temperatures are already widespread beneath the world’s tropical forest canopies

    Get PDF
    Tropical forest biodiversity is potentially at high risk from climate change, but most species reside within or below the canopy, where they are buffered from extreme temperatures. Here, by modelling the hourly below-canopy climate conditions of 300,000 tropical forest locations globally between 1990 and 2019, we show that recent small increases in below-canopy temperature (<1 °C) have led to highly novel temperature regimes across most of the tropics. This is the case even within contiguous forest, suggesting that tropical forests are sensitive to climate change. However, across the globe, some forest areas have experienced relatively non-novel temperature regimes and thus serve as important climate refugia that require urgent protection and restoration. This pantropical analysis of changes in below-canopy climatic conditions challenges the prevailing notion that tropical forest canopies reduce the severity of climate change impacts

    The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

    Get PDF
    Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes

    The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.Peer reviewe

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore