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A B S T R A C T   

Selective logging is responsible for approximately 50 % of human-induced disturbances in tropical forests. The 
magnitude of disturbances from logging on the structure of forests varies widely and is associated with a 
multitude of impacts on the forest microclimate. However, it is still unclear how changes in the spatial 
arrangement of vegetation arising from selective logging affect the capacity of forests to buffer large-scale 
climate (i.e., macroclimate) variability. In this study, we leveraged hundreds of terrestrial LiDAR measure
ments across tropical forests in Malaysian Borneoto quantify the impacts of logging on canopy structural traits, 
using a space-for-time approach. This information was combined with locally measured microclimate temper
atures of the forest understory to evaluate how logging disturbances alter the capacity of tropical forests to buffer 
macroclimate variability. We found that heavily logged forests were approximately 12 m shorter and had 65 % 
lower plant area density than unlogged forests, with most plant material allocated in the first 10 m above ground. 
Heavily logged forests were on average 1.5 ◦C warmer than unlogged forests. More strikingly, we show that 
subtle changes in the forest structure were sufficient to reduce the cooling capacity of forests during extremely 
warm days (e.g., anomalies > 2σ), while understory temperatures in heavily logged forests were often warmer 
than the macroclimate under the same conditions. Our results thus demonstrate that selective logging is asso
ciated with substantial changes in the fine-scale thermal regime of the understory. Hence, mitigating and 
managing logging disturbances will be critical for maintaining niches and thermal limits within tropical forests in 
the future.   

1. Introduction 

The vast majority of environmental changes in tropical forests are 
induced by human activities (Ellis et al., 2021; FAO, 2011). One of the 
most extensive of these activities is selective logging, the dynamics of 
which tend to change over time depending on human needs and 
socio-economic factors (Nakicenovic et al., 2000). Selective logging is 
characterized by the harvest of trees of economic interest, and is 
responsible for 51 % of the forest disturbances in Asia and Latin America 
(Hosonuma et al., 2012), accounting for approximately 12 % of the total 
CO2 emissions from forest disturbances in tropical countries (Pearson 

et al., 2017). The harvesting process also alters the structure and func
tioning of the forest by reducing tree density, modifying tree species 
composition, and changing the local climate (Blonder et al., 2018; 
Milodowski et al., 2021; Pfeifer et al., 2015; Santos et al., 2022). Logging 
of tall trees reduces the amount of plant material in the upper canopy 
(Hardwick et al., 2015; Santos et al., 2022) and creates forest gaps 
(Kumar and Shahabuddin, 2005), which increase light penetration 
(Fauset et al., 2017) and turbulent air mixing leading to a reduction of 
evapotranspiration (Good et al., 2015). 

As a result of the physical changes that occur in the forest, the fine- 
scale climatic conditions below the canopy, here defined as the forest 
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microclimate, are also impacted. The microclimate is regulated by a 
combination of the macroclimate (De Frenne et al., 2021), local water 
availability (Davis et al., 2019), soil, topography, and vegetation 
structure (Geiger et al., 2009). It is, therefore, directly linked to activities 
that affect the forest structure (Hardwick et al., 2015; Jucker et al., 
2018). The variability in the vertical profile of the forest canopy could 
modulate the relationship between microclimate and macroclimate, 
thus controlling attributes such as temperature offset and temperature 
range, hereafter referred as thermal metrics. The first metric is defined 
as the difference in temperature between the macroclimate and the 
microclimate, with negative values representing a relatively warmer 
microclimate and positive values representing a cooler microclimate (De 
Frenne et al., 2021). While the second metric (temperature range) rep
resents the difference between maximum and minimum temperatures 
(De Frenne et al., 2021). 

Forest microclimates greatly influence forest functioning, including 
soil respiration, nutrient cycling, and plant regeneration (Chen et al., 
1999; Smith and Johnson, 2004), and can affect forest ecosystem re
sponses to climate change (Stevens et al., 2015). Ecosystem dynamics 
can be more closely linked to variations in microclimate rather than in 
macroclimate (De Frenne et al., 2021) with amplified microclimate 
temperature fluctuation in open areas (Gril et al., 2022). Nevertheless, 
uncertainties persist in understanding the thermal characteristics of 
microclimates affected by logging due to limitations in acquiring 
microclimate data and the lack of quantitative methods to assess 
structural changes in tropical forests. While selective logging is known 
to induce structural changes resulting in elevated microclimate tem
peratures in tropical forests (Blonder et al., 2018), recent studies suggest 
that impacts of selective logging can be short-lived (Senior et al., 2017a). 

Recently, increased access to Light Detection and Ranging (LiDAR) 
technologies has enabled a more precise monitoring of forest structural 

attributes and a more robust understanding of the relationships between 
biophysical parameters and microclimate. In particular, Terrestrial 
Laser Scanning (TLS) systems can quantify the three-dimensional dis
tribution of plant material in high detail, even in dense tropical forests 
where aerial and spaceborne platforms have difficulties in character
izing the understory vegetation (Calders et al., 2020; Maeda et al., 2022; 
Santos et al., 2022). A potentially effective method for analysing the 
intricate data obtained from TLS systems involves calculating canopy 
structural metrics, commonly known as canopy structural traits 
(Schneider et al., 2019). These traits encompass physical attributes that 
offer insights into the vertical arrangement of the forest, encompassing 
details about the diversity and distribution of materials within the ver
tical profile. In combination with improved instrumentation capability 
for monitoring microclimate (Wild et al., 2019), these recent advances 
can offer new insights into the microclimatic conditions of logged forests 
and how forests will respond to increasing climatic variability. 

The objective of this study was to investigate how structural changes 
arising from selective logging affect the forest capacity to buffer tem
perature variability. The following research questions were addressed: 
1. How do changes in forest structural traits caused by logging affect 
microclimate patterns on a diurnal and seasonal basis? 2. Are observed 
changes in forest structure associated with predicted changes in the 
daily and seasonal patterns of microclimate temperature? To answer 
these questions, we used forest structure data derived from over 280 TLS 
measurements combined with in-situ microclimate measurements and 
high temporal resolution macroclimate data. 

Fig. 1. Location of the study area and the plots within the SAFE experiment, where the TLS and the microclimate data were collected. Panel (A) depicts the 
geographic location of Malaysia on the island of Borneoand the plot location. The SAFE project area and the location of the field plots are shown in (B). Panel (C) 
depicts a slice (5 m x 20 m) in the middle of each plot for the vertical profile as detected by TLS. In total, there were four blocks with four plots each distributed across 
three classes of logging: heavily logged (B and E), moderately logged (LFE) and unlogged (VJR). 
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2. Materials and methods 

2.1. Study area 

The study area is located between 4◦41′12″N and 4◦44′20″N, 
117◦30′50″E and 117◦38′56″E in the Malaysian state of Sabah, on the 
island of Borneo(Fig. 1). The climate is characterized as humid tropical, 
with annual accumulated precipitation between 2600 mm and 2700 
mm, and an average annual temperature around 27 ◦C (Walsh and 
Newbery, 1999). The area is considered aseasonal, as it lacks clear 
dry/rainy seasons. However, precipitation may be substantially reduced 
during El Niño Southern Oscillation (ENSO) events (Katayama et al., 
2009; Nunes et al., 2021). 

Our plots were located in the Stability of Altered Forest Ecosystems 
(SAFE) project region, the world’s largest forest fragmentation experi
ment (Ewers et al., 2011). The SAFE project is in an area gazetted for 
conversion to oil palm plantations. As oil palm plantations are estab
lished, fragments of logged forests are being protected as part of an 
experiment that investigates the impacts of logging and fragmentation 
on biodiversity and ecosystem functioning (Ewers et al., 2011). 

The SAFE project area connects 2200 ha of intact areas to forests that 
underwent selective logging several times in the past. Only approxi
mately 8 % of the area remains unlogged, and most of that is located in 
protected areas. In addition, it is estimated that 80 % of the forests were 
affected by logging in the 1990s and 2000s (Bryan et al., 2013). Thus, 
human activities resulted in areas with highly heterogeneous structure 
(Pfeifer et al., 2016; Reynolds et al., 2011) and high presence of pioneer 
species, which increase in abundance with increasing intensity of 
disturbance (Riutta et al., 2018). 

Our data were collected from sixteen 25 m x 25 m plots equally 
distributed over different SAFE project blocks B, E, LFE (Continuous 
Logged Forest) and in a protected adjacent area, VJR (Virgin Jungle 
Reserve) (Fig. 1B). The SAFE area was logged in the past one to four 
times, targeting commercially valuable species in the genera Dipter
ocarpus, Dryobalanops, Shorea and Parashorea. The first logging round 
took place around the 1970s, targeting trees with stems > 0.6 m 
diameter at breast height, resulting in approximately 113 m3 ha− 1 of 
timber harvested (Fisher et al., 2011). Between 2001 and 2007, the area 
underwent the second logging cycle with a diameter at breast height 
target of > 0.4 m. On average, around 31 m3 ha− 1 of wood were har
vested from SAFE area (Fisher et al., 2011). However, during the second 
rotation, blocks B and E were harvested three times, which led to an 
accumulated 66 m3 ha− 1 of wood extraction (Struebig et al., 2013). In 
the LFE block, 37 m3 ha− 1 of wood was harvested in the second rotation 
(Struebig et al., 2013). VJR is an area adjacent to the SAFE experiment, 
which was minimally logged in the past only on the borders of the 
fragment for the construction of access roads, with the interior 
remaining undisturbed with basal area similar to one of the best pre
served old-growth forests in Borneo, Danum Valley Conservation Area. 
Said that, we considered VJR as unlogged/intact forest. 

Due to variation in the amount of wood harvested in each block, the 
SAFE project area represents a logging disturbance gradient, herein 
described by classes of logging to differentiate the areas impacted by 
logging in terms of amount of wood harvested. The classes range from 
heavily logged forests (B and E blocks) followed by moderately logged 
forests (LFE block) to unlogged forests (VJR). 

2.2. Microclimate data 

Microclimate data for the entire year of 2019 were collected in the 
four blocks, B, E, LFE and VJR by placing a TOMST TMS-4 datalogger 
(TOMST, Prague, Czech Republic) (Wild et al., 2019) in the center of 
each plot (see Fig. S1 for more details). This datalogger collected tem
peratures at three different heights, soil (− 6 cm), surface (+2 cm) and 
air (+15 cm) temperatures, recorded every 15 min. TMS-4 dataloggers 
measure temperatures between − 60 ◦C and +85 ◦C with a resolution of 

0.0625 ◦C and an accuracy of ±0.5 ◦C. Here, we focused only on air 
temperature. The temperature in the sensor is sensible to direct radia
tion (Maclean et al., 2021), to avoid potential impacts of that effect, we 
filtered the temperature by removing all values over the 98th percentile. 
This remotion was made for each datalogger in the raw measurements, 
which were taken every 15 min. We evaluated the influence of filtering 
the data by conducting a sensitivity analysis by comparing the results 
filtering and not filtering the data. 

2.3. Macroclimate data 

The macroclimate temperature was derived from ERA5-Land atmo
spheric reanalysis by the European Centre for Medium-Range Weather 
Forecasts, which is a downscaled re-simulation of the land component of 
global ERA5 reanalysis (Hersbach et al., 2020; Muñoz Sabater, 2019). 
The dataset has a spatial resolution of ~9 km and it extends hourly data 
from 1950 to present. 

ERA5-Land data is produced using a reanalysis technique, where a 
diverse set of observational data, including satellite observations and 
ground-based measurements, are incorporated into a numerical weather 
model. This process aims to establish a coherent, gridded depiction of 
Earth’s climate. For this study, we used 2 m air temperature estimates 
from ERA5-Land as a measure of macroclimate temperature, obtained 
from the platform Climate Data Store for the period of 1989–2019 (30 
years). The 2 m temperature data in ERA5-Land represents the air 
temperature at a height of 2 m above the Earth’s surface. As a modeled 
data, ERA5-Land presents some uncertainties such as observational data 
quality, model representation, and data assimilation techniques. ERA5- 
Land demonstrates the capability to accurately capture temperature 
trends, and variability (Yilmaz, 2023; Zhao et al., 2023). Moreover, 
ERA5-Land is sensitive to daily and monthly changes, including fluctu
ations in temperature throughout the day, when compared to weather 
stations (Zou et al., 2022). 

In this study, we assumed that the 2 m macroclimate air temperature 
data provided a consistent view of the atmospheric conditions above the 
forest canopy. The spatial sampling of the plots within the SAFE project 
was designed to minimize confounding factors associated with topog
raphy, i.e., the maximum altitude difference between plots was 70 m. 
Hence, we assume that temperature differences due to vertical lapse rate 
effects were not substantial and did not confound the analysis under
taken in this study. 

2.4. Thermal metrics 

We calculated the thermal metrics for two different temporal scales 
for the year 2019, diurnal where the temperatures were aggregated by 
hour, and daily where the temperatures were aggregated by day for both 
microclimate and macroclimate. From macroclimate and microclimate 
in both temporal scales we estimated the minimum, mean and maximum 
temperatures, TMacroMin ,TMacroMean ,TMacroMax ,TMicroMin ,TMicroMean , and TMicroMax 

respectively. 
In addition, from macroclimate data we calculated the average 

temperature of the period from 1989 to 2018 (TMacro1989− 2018i
) and stan

dard deviation (σTMacro1989− 2018i
) for each day of the year to reflect normal 

climatological conditions. For this analysis we removed the years with 
Oceanic Niño Index (NOAA, 2019a,b) greater than or equal to 1 ◦C to 
prevent these abnormal years from influencing the calculation of mac
roclimatic anomalies. The years removed were 1997, 1998, 2014, 2015, 
and 2016. Finally, we estimated the daily macroclimate anomaly 
normalized by standard deviation for each day of 2019, which repre
sents how many standard deviations the daily average temperature 
differs from the historical average (Table 1, Eq. 1). 

To compare the macroclimatic and microclimatic temperatures, we 
computed minimum, mean and maximum temperature offsets, using Eq. 
2, 3 and 4, respectively. The offset is the difference between macro
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climate and microclimate temperatures (De Frenne et al., 2021). Addi
tionally, we computed the microclimatic diurnal range (Range, Eq.5), 
which is the difference between the maximum and minimum tempera
ture in the forest microclimate in a 24 h period. These metrics were 
calculated for all days of the year 2019. 

2.5. Terrestrial LiDAR data 

Terrestrial Laser Scanner data collection took place in November 
2019 using a RIEGL VZ-400i laser scanner. We used a vertical and 
horizontal resolution of 40 mdeg. The frequency used was 0.6 MHz, with 
a beam divergence of 0.35 mrad allowing for a measurement range of up 
to 350 m, recording up to eight returns per pulse, which resulted in a 
point spacing of 0.034 m at 50 m distance from the scanner. The scanner 
emitted pulses with a wavelength of 1550 nm, with a field of view of 
360◦ in the horizontal axis, and 100◦ in the vertical axis. 

We followed the methodology used by Wilkes et al. (2017) for the 
TLS acquisition, and the plots consisted of three by three grids, with 
measurements taken every 10 m, resulting in nine scan positions in each 
plot (see Fig. S.1 for a plot design scheme). As the scanner has a 100◦

field of view in the vertical plane, a second scan was performed in each 
location, with the scanner in the horizontal position by tilting the in
strument 90◦, resulting in the sampling of the full hemisphere in each 
scan location. As a result, each scan location was scanned twice, once 
with the scanner in the horizontal and once with the scanner in the 
vertical position, totalling more than 280 measurements over the 16 
plots. 

The individual scans were co-registered using the RIEGL RiSCAN 
PRO® v2.9 software. This process consisted of adjusting each scan 
location, moving the point cloud in three rotations (pitch, yaw, roll) and 
in three axes (x, y, z). We kept the adjustment error below 5 mm and 
carefully proceeded with visual inspections to ensure that the registra
tion process was successful. Lastly, Digital Terrain Models (DTM) were 
constructed using LAStools software (Isenburg, 2016) for each plot. 

We used a voxel approach to derive vertical canopy structural traits 
on the software AMAPVox version 1.6.1 (Vincent et al., 2017). AMAP
Vox tracks each laser pulse through a defined 3D grid to the last return, 
and then computes the local attenuation in each voxel from the optical 
path length of each pulse inside of the voxel and the sampling area of 
each laser pulse. The sampling area of each laser pulse was computed by 
the combination of the theoretical pulse beam section and the residual 
beam fraction in a voxel space. Following the assumption that the angles 
in the vegetation components are spherically distributed (Béland et al., 
2011), we estimated the Plant Area Density (PAD, m2 m–3) by dividing 
the attenuation by 0.5. Additionally, we estimated other canopy struc
tural traits, such as Plant Area Index (PAI), and layered PAI in every 5 m 
of the vertical profile, Relative Height (RH), Canopy Ratio (CR), Foliage 
Height Diversity (FHD), and Effective Number of Layers (ENL). 

The PAI was defined as the projected area of the vegetation per unit 
of ground surface area (Vincent et al., 2017), and it was estimated by the 
sum of PAD values in each column (PAI = ΣPAD) (Schneider et al., 2017, 
2014). Hence, PAI (m2 m–2) provides an integrated measure of the 
number of leaves and wood allocated over the vertical column. The RH 

describes the distribution of material from the ground at a specific 
height (Drake et al., 2002). For instance, RH75 of 15 m means that 75 % 
of all material is distributed below 15 m of the height from the ground. 
We calculated the RHs at two percentiles, 25 % and 98 %, which were 
used to compute the CR. This trait reflects the ratio between the can
opy’s depth (RH98 minus RH25) and the total height (RH98). The CR 
values below 0.74 indicate a forest stand where the material is mostly 
concentrated in the upper stratum, while values above 0.74 indicate that 
the plant material is concentrated in the lower layers of the canopy 
(Schneider et al., 2020). The FHD (MacArthur and MacArthur, 1961) 
was calculated by applying the Shannon-Wiener diversity index on 
vertical profiles of PAD. It expresses the number of layers in the vertical 
profile of the forest and the evenness of the plant surface distribution 
among vertical canopy layers. The higher the FHD, the greater the 
number of canopy layers. Higher values also indicate greater habitat 
complexity (Schneider et al., 2017). Lastly, we estimated the ENL, which 
is a measure that describes vertical structure taking into account the 
vertical layers and their respective occupation by tree structures relative 
to the total space occupation (Ehbrecht et al., 2016). Higher values of 
ENL indicate more vegetation layers, or a multi-layered stand. 

2.6. Statistical analyses 

We combined TLS-derived structural traits, microclimate, and mac
roclimate temperatures to analyse how temperature varies across two 
different temporal scales, diurnal, and seasonal under heavily, moder
ately, and not logged forest conditions. First, we analysed the Pearson 
correlation among the structural traits and their distribution across the 
logging classes and microclimate and macroclimate temperature pat
terns in a period of 24 h. This was processed with an exploratory analysis 
for both structural traits and thermal metrics (Section 3.1 and 3.2). 

The seasonal temporal scale (Section 3.3) represents the temperature 
patterns for the year 2019. We aggregated the temperature by day, 
ending with 365 values for minimum, mean and maximum daily tem
peratures. Similar to Section 3.2, we proceeded with an exploratory 
analysis evaluating the influence of logging on the seasonal variability of 
minimum, mean and maximum temperatures. In addition, we estimated 
the macroclimate anomalies derived from ERA5-Land as a baseline to 
investigate the thermal metrics patterns in relation to structural traits 
(Section 3.4). Mixed models were trained to explain the relationship 
between offset temperatures and macroclimate temperature with the 
influence of forest structure. These models had as response variable the 
offset for temperature minimum, mean, maximum and temperature 
range. Plot identity was used as a random factor (slope and intercept) to 
consider the variation within the plots that are not related to changes in 
forest structure. Forest structural traits and macroclimate anomaly were 
defined as fixed effects. 

We combined structural traits two by two to fit explanatory models. 
Highly correlated traits were not included in the same model to avoid 
inflation of model explanatory power due to multicollinearity. The 
ecological relevance of each trait was also considered to be included in 
the models (Santos et al., 2022). We assumed that canopy structure 
remained unaffected during the year 2019, as the plant area index 
during non-El Niño years can be similar in these forest plots throughout 
the year (Nunes et al., 2021), thereby having potentially small in
fluences on the structural traits of our analysis. To demonstrate that no 
substantial variability is expected in the forest structure in SAFE area, 
we demonstrated the NDVI time-series over the SAFE region plots (see 
Fig. S2), which show constant values throughout the series, except when 
the region started to be converted from forest to palm oil plantations, 
around 2015. 

In order to evaluate our analyses, we performed two sensitivity an
alyses (see Supplementary Material). Firstly, we compared the result by 
filtering and not filtering the microclimate data at 98th percentile, to 
evaluate the influence of anomalous values due to heatshield effect. 
Also, another sensitivity analysis was conducted to investigate if 

Table 1 
Thermal metrics used in this study and their respective equations.  

Trait Equation  

Anomaly 
Anomalyi =

TMacro2019i
− TMacro1989− 2018i

σTMacro1989− 2018i 

(1) 

Offset Minimum OffsetMini = TMacroMini
− TMicroMini 

(2) 
Offset Mean OffsetMeani = TMacroMeani

− TMicroMeani 
(3) 

Offset Maximum OffsetMaxi = TMacroMaxi
− TMicroMaxi 

(4) 
Diurnal range Rangei = TMicroMaxi

− TMicroMini 
(5)  

where i represents the day of the year. 
T is the average of the i-th day   
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individuals plots would affect the estimates in our analysis. To validate 
all the models, we performed 1000 bootstrap iterations, by randomly 
resampling the data in training and test datasets. We evaluated the 
uncertainty associated to each model by estimating the distribution 
through the bootstrap by recording the conditional R2 for the overall 
model and for each predictor (partitioned R2) in each bootstrap inter
action. All the analyses were conducted in R (R Core Team, 2020), to run 
the mixed models we used the lme4 package (Bates et al., 2015) and for 
the partitioned R2 the package partR2 (Stoffel et al., 2020). Additionally, 
no specific function or package was developed here to process the data. 

Since TLS measurements and microclimate data were not available 
before the logging (1970s, - 2001–2007), our analyses are based on a 
space-for-time approach. The method presupposes that geographically 
distinct sites chosen according to ecological or environmental gradients 
can function as substitutes for forecasting ecological time series, such as 
vegetation succession (Fukami and Wardle, 2005; Pickett, 1989; Pickett 
and White, 1985). This assumption is valid in SAFE, because the project 
was designed to minimize the effects of confounding factors, such as 
elevation and slope. 

3. Results 

3.1. Vertical forest structure 

The correlation of structural traits varied in terms of each other 
(Fig. S3). The CR presented the lowest correlation among other traits 
followed by PAI(30–35). Most of the differences between logging classes 
were evident in the plant material allocation of the middle and upper 
canopy layers (Fig. 2A), with less plant material (i.e., branches of tall 
trees) in heavily logged forests. Heavily logged, moderately logged and 
unlogged forests had average PAIs of 6.7 m2 m–2, 9 m2 m–2, and 9.8 m2 

m–2, respectively, and canopy height of 10.5 m, 18.2 m and 27.6 m, 
respectively. 

Within the logging disturbance gradient encompassing heavily log
ged (composed by blocks B and E), moderately logged (block LFE) and 
unlogged forests (block VJR), heavily logged forests had a relative 
higher proportion of plant material allocated in the lower layers (0 to 10 
m above ground – see Fig. 2A). Moderately logged forests had more 
plant material at the medium-upper layer of the canopy while unlogged 
forests, despite having a similar vertical plant distribution as in 
moderately logged stands, had a larger amount of plant material in the 

upper layers above 30 m (refer to Fig. S4). 

3.2. Diurnal microclimate patterns 

Our temperature measurements revealed that heavily logged forests 
had the highest mean temperatures during the day. However, this 
pattern was inverted at night-time (18 h to 6 h), with unlogged forests 
being warmer than heavily logged forests (Fig. 2B). The minimum 
diurnal temperatures were similar across all three logging classes 
(Fig. S5A). However, in the early morning (4 h to 8 h) unlogged forests 
had higher minimum temperatures than heavily logged and moderately 
logged forests, 0.7 ◦C and 1.6 ◦C respectively. On the other hand, for the 
maximum diurnal temperature (Fig. S5B) between 6 h to 18 h, the 
heavily logged forests were approximately 1.8 ◦C warmer than moder
ately logged and 2.5 ◦C warmer than unlogged forests on average. 
Furthermore, during nighttime all three classes of logging presented 
similar temperatures, unlogged forests tended to be slightly warmer 
than heavily logged forests by 0.5 ◦C. However, note sensor accuracy is 
only 0.5 ◦C, which limits the precision with which we can detect dif
ferences in temperature. 

3.3. Seasonal microclimate variability 

The minimum, maximum and mean daily macroclimate and micro
climate temperatures demonstrate seasonal patterns that were incon
sistent throughout the year (Fig. 3A–C). A relatively warmer period was 
observed between April 2019 and July 2019, thus exceeding the tem
peratures between August and December 2019. The magnitude of the 
seasonal fluctuations depended on the logging history as well as the 
thermal trait. 

The minimum daily microclimate temperatures were cooler than the 
minimal macroclimate temperatures throughout the year and across all 
the logging classes (Fig. 3A). Unlogged forests had lower minimum 
microclimate daily temperatures than moderately and heavily logged 
forests. Additionally, unlogged forests did not present high temperature 
fluctuation across the year (i.e., within-block temperature amplitude 
was 1.9 ◦C). In contrast, this fluctuation was more pronounced in 
moderately and heavily logged forests for the minimum temperature (3 
◦C). 

The seasonal patterns of mean daily temperature across 2019 showed 
more similarities among the logging classes in terms of temperature 

Fig. 2. In (A) the distribution of PAD along the vertical profile for all plots with the average values in the thickest lines. In (B), the mean diurnal temperature 
quantified for each plot in heavily logged (purple), moderately logged (yellow), and unlogged (teal) classes of logging. The thickest lines represent the average among 
the curves in each class of logging. The red line represents the macroclimate temperature in ERA5-Land data. The grey and red shadows in the means and ERA5-Land 
curves represent the interval of confidence. For mean and minimum temperatures, see Fig. S.5. 
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fluctuation over the period, except for two plots in the heavily logged 
block, which presented warmer mean daily temperatures than the others 
(See Table S.1 and Fig. S6 for a sensitivity analysis when removing the 
warmer plot in HL category). The average temperature for the entire 
period analysed here in the macroclimate was approximately 1.5 ◦C and 
2.5 ◦C warmer than heavily logged and unlogged, respectively. The 
amplitude of mean temperature in unlogged forests was lower than in 
forests affected by logging. Fig. 3B shows how the amplitude of mean 
temperatures in unlogged forests was less pronounced than in moder
ately and heavily logged forests. 

The maximum daily temperature presented the highest fluctuations 
of temperature (Fig. 3C). While the maximum macroclimate tempera
tures were steady, forests affected by logging, and with lower PAI, had a 
large fluctuation in maximum temperature. The seasonal amplitude of 
maximum daily temperature decreased in unlogged forests that had 
typically higher PAI and canopy height. The amplitude, on average, in 
seasonal maximum daily temperature in unlogged plots was between 
25.5 ◦C and 29 ◦C (3.5 ◦C) while in heavily logged plots the amplitude 
was between 25.2 ◦C and 36.7 ◦C (11.5 ◦C). These findings demonstrate 
a two-fold variability in mean of maximum temperatures linked to 
logging intensity. 

3.4. Thermal metrics under extreme climatic events 

The intricate relationship between microclimate and macroclimate 
temperatures, demonstrated that thermal traits behave differently in 
relation to macroclimate temperature anomalies. It influences temper
ature dynamics across different logging intensities and its implications 
for the forest’s capacity to buffer climatic variability. Fig. 4 shows how 
microclimate temperatures are related to macroclimate temperature 
anomalies. Positive offset values indicate that macroclimate tempera
tures are higher than microclimate temperatures, while negative values 
indicate that understory temperatures are lower than macroclimate 
temperatures. As the macroclimate warms relative to historical average 
conditions (i.e., anomaly), the minimum temperature offset increased 
across all classes of logging intensity (Fig. 4A). Unlogged forests had 
consistently lower minimum temperature offsets than heavily and 
moderately logged forests, which indicates that logged forests had lower 

minimum temperatures than unlogged forests, during either cold or hot 
days. Differences in the mean offset temperatures across the gradient in 
logging intensity were smaller, with a slight increase in the offset for 
moderately logged forests (Fig. 4B). 

The maximum offset presented the greatest differences among the 
three classes of logging intensity. While the offsets in heavily and 
moderately logged forests were negative, offsets in unlogged forests 
were positive. The variation in macroclimate led to changes in offsets 
from 0.3 ◦C to 1.6 ◦C in unlogged forests and from − 2.3 ◦C to − 3.9 ◦C in 
heavily logged forests (Fig. 4C). These results thus demonstrate that the 
forest capacity to buffer macroclimate variability, particularly in 
extreme climatic events, can be substantially affected even in moder
ately logged forests. 

The range in the daily microclimate temperature was also strongly 
affected by logging (Fig. 4D). While the daily temperature range in 
unlogged forests increased by approximately 3.5 ◦C (from ~3.0 ◦C to 6.5 
◦C), the daily temperature range of heavily disturbed forests increased 
by ~6 ◦C (from ~5.9 ◦C to 12 ◦C). 

Canopy structural traits had a strong influence on the capacity of 
forest to offset extreme temperatures. The CR and upper canopy PAI 
between 30 and 35 m had the highest contributions to explain the 
microclimate offset temperatures and range. The CR explained approx
imately 40 % of the variability in maximum offset temperature and the 
upper canopy PAI between 30 m and 35 m explained another 40 % 
(Fig. 5). These values, however, were not independent (i.e., some of the 
variability could be concomitantly explained by both variables). 
Considering all random and fixed variables, the model explained 84 %, 
91 % and 73 % of the variability for the minimum, mean and maximum 
offset temperatures respectively, and 82 % of the range temperature. 
The fixed effects in the model alone explained 32 %, 51 %, 47 %, and 52 
% for minimum, mean, maximum offset and range temperatures, 
respectively. 

These results demonstrate the key role of forest structural traits, 
particularly the proportional distribution of plant material along the 
vertical profile, in regulating microclimate temperatures during extreme 
events. While the minimum temperature showed that the offset was 
more strongly driven by macroclimate anomalies, and proportionally 
less by structural attributes, the reverse was true for maximum 

Fig. 3. Minimum (A), mean (B) and maximum (C) daily air temperature for heavily logged (purple), moderately logged (yellow) and unlogged (teal) plots. Each 
curve represents the temperature based on 96 measurements in 24 h for each day in 2019. The red line represents the temperature outside of the forest calculated 
with ERA5-Land data. The thickest lines represent the average, and the grey shading represents the confidence interval of the curves. 

E.G. Santos et al.                                                                                                                                                                                                                               



Agricultural and Forest Meteorology 348 (2024) 109912

7

temperature offset (Fig. 5). 

4. Discussion 

High density terrestrial LiDAR combined with long-term microcli
mate measurements provided new insights into the contribution of 
physical forest attributes in regulating the thermal buffering capacity of 
tropical forests. We demonstrated that changes in structural traits, 
particularly those representing the vertical allocation of plant material, 
can substantially influence the capacity of forests to buffer large-scale 
temperature variability. We discuss the implications of these findings, 
their limitations, and how they can be inserted into a broader context to 
further expand our knowledge in this field. 

4.1. Influence of forest structural traits on the microclimate 

Our results clarified how forest structural characteristics, as well as 
the changes in these characteristics caused by selective logging, affect 
the capacity of forests to offset macroclimatic variability. We found that 
traits representing the vertical distribution of vegetation within the 
forest are particularly useful to determine how well forests can offset 
macroclimate temperatures. In particular, the canopy ratio (CR) and the 

Fig. 4. The curves represent the modelled relationship based on mixed models of minimum (A), mean (B), maximum (C) offsets and range (D) for air temperature, 
where anomaly, CR and PAI(30–35) were fixed effects and plot id and the slope were random effects. The three colours represent heavily logged (purple), moderately 
logged (yellow), and unlogged (teal) forests. 

Fig. 5. Partitioning variance explained by the model and by each canopy trait 
included in the final model. The results show the conditional R2 and confidence 
interval for each fixed variable in the model for minimum (grey), mean (yellow) 
maximum (red) offsets and range (green) after a 1000 bootstrap replication. See 
Table S.1 for a sensitivity analysis and S2 for the regression coefficient. 
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material allocated in the highest layers between 30 m and 35 m (PAI 
30–35) were successful in explaining a large part of the maximum offset 
variability, and these structural characteristics were strongly associated 
with forest disturbances (Santos et al., 2022; Maeda et al., 2022). In 
dense unlogged tropical forests, air temperature spikes can occur near 
the ground, but are more often experienced within the top canopy, 
where most of the incoming energy is absorbed (Didham and Ewers, 
2014). Below tree canopies, reduced radiation and air mixing combined 
with evapotranspiration often translate into lower temporal variation in 
air temperature and humidity compared to open environments (Arx 
et al., 2013; Davis et al., 2019; Geiger et al., 2009; Haesen et al., 2023, 
2021). Therefore, the characteristics of the vegetation layer between the 
soil and the atmosphere play a major role in regulating the spatial and 
temporal characteristics of the conditions experienced inside the forest. 
However, as demonstrated here, these dynamics are gradually changed 
with different levels of forest disturbance. 

The CR values are higher in forests with relatively more vegetation in 
the understory (Maeda et al., 2022). This is typical of forests disturbed 
by logging, where canopy gaps created by the removal of trees increase 
the penetration of incoming solar radiation, and favour the growth of 
understory vegetation and thus increase the CR. Moreover, the removal 
of tall emergent trees also results in the reduction of vegetation in the 
upper layers of the canopy. This has direct implications in reducing the 
PAI(30–35). 

The patterns of temperature offset differed for daytime (maximum 
offset) and nighttime (minimum offset). While the magnitude of the 
minimum offset was mainly driven by macroclimate conditions, the 
maximum offset was strongly influenced by forest structural character
istics (i.e., CR and PAI 30–35) (Fig. 5). These findings suggest that 
unlogged forests will likely become increasingly important in offsetting 
temperature anomalies in the future, in particular for the maximum 
temperature along projected increase in the frequency of extreme warm 
events (Solomon et al., 2007). 

4.2. Diurnal variability 

The biophysical mechanisms defining diurnal forest microclimate 
patterns are relatively well understood. During daytime, incoming solar 
radiation interacts with the forest canopy, and can either be reflected, 
transmitted or absorbed (Panferov et al., 2001). Of the fraction that is 
absorbed, some is used in photosynthesis, and some is transformed into 
heat in the leaves and forest layers. Selective logging leads to an abrupt 
reduction in the plant material allocated in the upper layers of the 
canopy, allowing more radiation to reach the ground and thus 
increasing the temperature near the forest surface. Forests with a more 
even vertical distribution of plant material, or a larger allocation in the 
upper layers, as in the case of plots in VJR (i.e., without recent selective 
logging), have more incoming radiation intercepted and higher rough
ness length, reducing wind speed and decreasing vertical mixing of air 
below the canopy (Raupach et al., 1996), consequently the temperature 
near the surface tends to be lower. 

In unlogged forests, the canopy interaction with incoming short- 
wave solar radiation, combined with evaporative cooling, leads to a 
reduction of the understory daytime temperature on average 4.6 ◦C 
compared to open-field conditions. In contrast, nighttime temperatures 
of forest understories are on average 1 ◦C warmer, mainly as a result of 
canopy heat retention through shielding of the outgoing long-wave ra
diation by the canopy (De Frenne et al., 2019; Geiger et al., 2009). Our 
results reinforce the fact that, when evaluating only daily average 
values, these complex diurnal dynamics are lost, hiding important in
formation for understanding the impacts of disturbances on the micro
climate, as well as its response to macroclimate variability. 

The overall diurnal temperature patterns reported in our results are 
in line with other studies that relate logging to microclimate tempera
ture (Blonder et al., 2018; Hardwick et al., 2015; Jucker et al., 2018), 
whereby selectively logged forests presented higher microclimate 

temperature fluctuations. Often, the highest temperatures are recorded 
around midday. Since disturbed forests have less canopy material to 
intercept solar radiation and wind, they heat up more quickly than 
non-degraded forests. These characteristics reduce the buffer potential 
of the forest, which disrupts thermal inertia and leads to faster warming 
of the forest microclimate. (Zellweger et al., 2019). 

However, some studies have indicated that selective logging has 
minimal impact on microclimate temperature (Senior et al., 2017a, 
2017b). Nevertheless, in contrast to our study and those conducted in 
the SAFE area (Blonder et al., 2018; Hardwick et al., 2015; Jucker et al., 
2018), Senior et al. (2017a) examined a continuous forest where the 
logged region was connected to an unlogged area. It is important to note 
that the logged forests defined by Senior et al. (2017a), are similar to 
what we considered as moderately logged (block LFE). Additionally, a 
crucial disparity between the studies lies in the spatial scale analysed. 
Senior et al. (2017a) defined macroclimate as the temperature recorded 
by dataloggers suspended within the forest, while we utilized temper
ature data from ERA5-Land at a scale of ~9 km as our macroclimate 
reference. Furthermore, in our study, microclimate measurements were 
taken at a height of 15 cm from the ground, whereas Senior et al. 
(2017a) regarded microclimate as the climate inside microhabitats, 
including tree holes, deadwood, and leaf litter. Another noteworthy 
distinction is the temporal scale examined. We conducted a compre
hensive survey throughout the entirety of 2019, whereas Senior et al. 
(2017a) focused on a four-month period (April to July 2015). Consid
ering these factors, the impact of forest degradation on microclimate 
temperature is contingent upon forest structure, the thermal metrics 
analysed, and primarily, the spatial-temporal scale considered. 

4.3. Microclimatic seasonality along a selective logging gradient 

Structural changes arising from selective logging alter albedo, reduce 
roughness and promote more sensible heat exchange over latent heat 
exchange. As demonstrated here, these disturbances result in a range of 
microclimatic temperature changes. However, the magnitude of these 
changes is also strongly dependent on geographical and temporal fac
tors, such as latitude (Lee et al., 2011), altitude (Aalto et al., 2022), and 
local climate seasonality. 

Throughout 2019, areas affected by selective logging showed mini
mum temperatures and daily averages cooler than the macroclimate 
temperatures. On the other hand, daily maximum temperatures were 
warmer than the macroclimate for all heavily logged forests. Given the 
relatively coarse resolution of the ERA5-Land dataset, the macroclimate 
temperatures for our plots were similar or equal to each other. This 
aligns with our initial assumption that the macroclimate represents the 
overall open-air temperature. The validity of this assumption is rein
forced by the fact that the SAFE experiment was designed to minimize 
confounding factors associated with topographic and altitudinal differ
ences (Ewers et al., 2011). Consequently, the different microclimate 
seasonal patterns observed in our plots are largely driven by the struc
tural differences arising from the varied logging activities. The most 
noticeable impact was a greater microclimatic temporal variability in 
heavily logged forests, which has also been reported in previous studies 
(Blonder et al., 2018). 

A larger seasonal variability in selectively logged forests indicates a 
lower capacity of the forest to buffer microclimate temperatures (De 
Frenne et al., 2013; Hardwick et al., 2015). Our results provide further 
evidence that disturbed forests may be more exposed to seasonal vari
ability. While unlogged forests managed to buffer macroclimate sea
sonal fluctuations, logged forests experienced considerably more 
fluctuations throughout the year, including a higher temperature. 

5. Conclusion 

Our study quantified how structural changes arising from selective 
logging affect the capacity of tropical forests to offset large-scale climate 

E.G. Santos et al.                                                                                                                                                                                                                               



Agricultural and Forest Meteorology 348 (2024) 109912

9

variability. We demonstrate that, to effectively identify how structural 
changes affect the microclimate, temperature patterns need to be ana
lysed through different temporal scales, and with a careful consideration 
of both local and large-scale conditions. Forests affected by logging 
tended to be relatively shorter and with less vegetation allocated in the 
higher layers (i.e., 30 to 35 m). Consequently, disturbed forests pre
sented a more uneven vertical distribution of plant material, with a 
higher concentration of vegetation in the understory. These changes 
affected energy partition and heat exchange within the canopy, reducing 
the potential of the forest to buffer temperatures below the canopy. 
When compared to unlogged forests, heavily logged forests tended to be 
warmer during the day and colder during the night. Logged forests 
presented larger seasonal fluctuations in the daytime temperature when 
compared to unlogged forests, thus showing a reduced capacity to 
alleviate intra-annual macroclimate variability. More importantly, we 
identified a strong decline in the capacity of logged forests to buffer 
extreme warm events, with differences between maximum temperatures 
inside and outside forests substantially increasing during anomalous 
warm days. 
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