31 research outputs found

    Bulk and film synthesis pathways to ternary magnesium tungsten nitrides

    Full text link
    Bulk solid state synthesis of nitride materials usually leads to thermodynamically stable, cation-ordered crystal structures, whereas thin film synthesis tends to favor disordered, metastable phases. This dichotomy is inconvenient both for basic materials discovery, where non-equilibrium thin film synthesis methods can be useful to overcome reaction kinetic barriers, and for practical technology applications where stable ground state structures are sometimes required. Here, we explore the uncharted Mg-W-N chemical phase space, using rapid thermal annealing to reconcile the differences between thin film and bulk powder syntheses. Combinatorial co-sputtering synthesis from Mg and W targets in a N2_2 environment yielded cation-disordered Mg-W-N phases in the rocksalt (0.1< Mg/(Mg+W) <0.9), and hexagonal boron nitride (0.7< Mg/(Mg+W) <0.9) structure types. In contrast, bulk synthesis produced a cation-ordered polymorph of MgWN2_2 that consists of alternating layers of rocksalt-like [MgN6_6] octahedra and nickeline-like [WN6_6] trigonal prisms (denoted "rocksaline"). Thermodynamic calculations corroborate these observations, showing rocksaline MgWN2_2 is stable while other polymorphs are metastable. We also show that rapid thermal annealing can convert disordered rocksalt films to this cation-ordered polymorph near the MgWN2_2 stoichiometry. Electronic structure calculations suggest that this rocksalt-to-rocksaline structural transformation should also drive a metallic-to-semiconductor transformation. In addition to revealing three new phases (rocksalt MgWN2_2 and Mg3_3WN4_4, hexagonal boron nitride Mg3_3WN4_4, and rocksaline MgWN2_2), these findings highlight how rapid thermal annealing can control polymorphic transformations, adding a new strategy for exploration of thermodynamic stability in uncharted phase spaces

    Mechanistically-guided materials chemistry: synthesis of new ternary nitrides, CaZrN2_2 and CaHfN2_2

    Full text link
    Recent computational studies have predicted many new ternary nitrides, revealing synthetic opportunities in this underexplored phase space. However, synthesizing new ternary nitrides is difficult, in part because intermediate and product phases often have high cohesive energies that inhibit diffusion. Here, we report the synthesis of two new phases, calcium zirconium nitride (CaZrN2_2) and calcium hafnium nitride (CaHfN2_2), by solid state metathesis reactions between Ca3_3N2_2 and MMCl4_4 (MM = Zr, Hf). Although the reaction nominally proceeds to the target phases in a 1:1 ratio of the precursors via Ca3_3N2_2 + MMCl4_4 \rightarrow CaMMN2_2 + 2 CaCl2_2, reactions prepared this way result in Ca-poor materials (CaxM2x_xM_{2-x}N2_2, x<1x<1). A small excess of Ca3_3N2_2 (ca. 20 mol\%) is needed to yield stoichiometric CaMMN2_2, as confirmed by high-resolution synchrotron powder X-ray diffraction. In situ synchrotron X-ray diffraction studies reveal that nominally stoichiometric reactions produce Zr3+^{3+} intermediates early in the reaction pathway, and the excess Ca3_3N2_2 is needed to reoxidize Zr3+^{3+} intermediates back to the Zr4+^{4+} oxidation state of CaZrN2_2. Analysis of computationally-derived chemical potential diagrams rationalizes this synthetic approach and its contrast from the synthesis of MgZrN2_2. These findings additionally highlight the utility of in situ diffraction studies and computational thermochemistry to provide mechanistic guidance for synthesis

    The Nachtlichter app: a citizen science tool for documenting outdoor light sources in public space

    Get PDF
    The relationship between satellite based measurements of city radiance at night and the numbers and types of physical lights installed on the ground is not well understood. Here we present the "Nachtlichter app", which was developed to enable citizen scientists to classify and count light sources along street segments over large spatial scales. The project and app were co-designed: citizen scientists played key roles in the app development, testing, and recruitment, as well as in analysis of the data. In addition to describing the app itself and the data format, we provide a general overview of the project, including training materials, data cleaning, and the result of some basic data consistency checks

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Research and Science Today No. 2(4)/2012

    Full text link

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    A História da Alimentação: balizas historiográficas

    Full text link
    Os M. pretenderam traçar um quadro da História da Alimentação, não como um novo ramo epistemológico da disciplina, mas como um campo em desenvolvimento de práticas e atividades especializadas, incluindo pesquisa, formação, publicações, associações, encontros acadêmicos, etc. Um breve relato das condições em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biológica, a econômica, a social, a cultural e a filosófica!, assim como da identificação das contribuições mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histórica, foi ela organizada segundo critérios morfológicos. A seguir, alguns tópicos importantes mereceram tratamento à parte: a fome, o alimento e o domínio religioso, as descobertas européias e a difusão mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rápido balanço crítico da historiografia brasileira sobre o tema

    Combinatorial synthesis of cation-disordered manganese tin nitride MnSnN2_2 thin films with magnetic and semiconducting properties

    Full text link
    Magnetic semiconductors may soon improve the energy efficiency of computers, but materials exhibiting these dual properties remain underexplored. Here, we report the computational prediction and realization of a new magnetic and semiconducting material, MnSnN2_2, via combinatorial sputtering of thin films. Grazing incidence wide angle X-ray scattering and laboratory X-ray diffraction studies show a wide composition tolerance for this wurtzite-like MnSnN2_2, ranging from 20%<20\% < Mn/(Mn+Sn) <65< 65\% with cation disorder across this composition space. Magnetic susceptibility measurements reveal a low-temperature transition (T10T^{\mathrm{*}} \approx 10 K) for MnSnN2_2 and strong antiferromagnetic correlations, although the ordering below this transition may be complex. This finding contrasts with bulk MnSiN2_2 and MnGeN2_2, which exhibited antiferromagnetic ordering above 400 K in previous studies. Spectroscopic ellipsometry identifies an optical absorption onset of 1 eV for the experimentally-synthesized phase exhibiting cation disorder, consistent with the computationally-predicted 1.2 eV bandgap for the cation-ordered structure. Electronic conductivity measurements confirm the semiconducting nature of this new phase by showing increasing conductivity with increasing temperature. This work adds to the set of known semiconductors that are paramagnetic at room temperature and will help guide future work targeted at controlling the structure and properties of semiconducting materials that exhibit magnetic behavior

    Solution and Solid State Structural Chemistry of Th(IV) and U(IV) 4‑Hydroxybenzoates

    No full text
    Organic ligands with carboxylate functionalities have been shown to affect the solubility, speciation, and overall chemical behavior of tetravalent metal ions. While many reports have focused on actinide complexation by relatively simple monocarboxylates such as amino acids, in this work we examined Th­(IV) and U­(IV) complexation by 4-hydroxybenzoic acid in water with the aim of understanding the impact that the organic backbone has on the solution and solid state structural chemistry of thorium­(IV) and uranium­(IV) complexes. Two compounds of the general formula [An<sub>6</sub>O<sub>4</sub>(OH)<sub>4</sub>(H<sub>2</sub>O)<sub>6</sub>(4-HB)<sub>12</sub>]·<i>n</i>H<sub>2</sub>O [An = Th (<b>Th-1</b>) and U (<b>U-1</b>); 4-HB = 4-hydroxybenzoate] were synthesized via room-temperature reactions of AnCl<sub>4</sub> and 4-hydroxybenzoic acid in water. Solid state structures were determined by single-crystal X-ray diffraction, and the compounds were further characterized by Raman, infrared, and optical spectroscopies and thermogravimetry. The magnetism of <b>U-1</b> was also examined. The structures of the Th and U compounds are isomorphous and are built from ligand-decorated oxo/hydroxo-bridged hexanuclear units. The relationship between the building units observed in the solid state structure of <b>U-1</b> and those that exist in solution prior to crystallization as well as upon dissolution of <b>U-1</b> in nonaqueous solvents was investigated using small-angle X-ray scattering, ultraviolet–visible optical spectroscopy, and dynamic light scattering. The evolution of U solution speciation as a function of reaction time and temperature was examined. Such effects as well as the impact of the ligand on the formation and evolution of hexanuclear U­(IV) clusters to UO<sub>2</sub> nanoparticles compared to prior reported monocarboxylate ligand systems are discussed. Unlike prior reported syntheses of Th and U­(IV) hexamers where the pH was adjusted to ∼2 and 3, respectively, to drive hydrolysis, hexamer formation with the HB ligand appears to be promoted only by the ligand
    corecore