31 research outputs found
Bulk and film synthesis pathways to ternary magnesium tungsten nitrides
Bulk solid state synthesis of nitride materials usually leads to
thermodynamically stable, cation-ordered crystal structures, whereas thin film
synthesis tends to favor disordered, metastable phases. This dichotomy is
inconvenient both for basic materials discovery, where non-equilibrium thin
film synthesis methods can be useful to overcome reaction kinetic barriers, and
for practical technology applications where stable ground state structures are
sometimes required. Here, we explore the uncharted Mg-W-N chemical phase space,
using rapid thermal annealing to reconcile the differences between thin film
and bulk powder syntheses. Combinatorial co-sputtering synthesis from Mg and W
targets in a N environment yielded cation-disordered Mg-W-N phases in the
rocksalt (0.1< Mg/(Mg+W) <0.9), and hexagonal boron nitride (0.7< Mg/(Mg+W)
<0.9) structure types. In contrast, bulk synthesis produced a cation-ordered
polymorph of MgWN that consists of alternating layers of rocksalt-like
[MgN] octahedra and nickeline-like [WN] trigonal prisms (denoted
"rocksaline"). Thermodynamic calculations corroborate these observations,
showing rocksaline MgWN is stable while other polymorphs are metastable. We
also show that rapid thermal annealing can convert disordered rocksalt films to
this cation-ordered polymorph near the MgWN stoichiometry. Electronic
structure calculations suggest that this rocksalt-to-rocksaline structural
transformation should also drive a metallic-to-semiconductor transformation. In
addition to revealing three new phases (rocksalt MgWN and MgWN,
hexagonal boron nitride MgWN, and rocksaline MgWN), these findings
highlight how rapid thermal annealing can control polymorphic transformations,
adding a new strategy for exploration of thermodynamic stability in uncharted
phase spaces
Mechanistically-guided materials chemistry: synthesis of new ternary nitrides, CaZrN and CaHfN
Recent computational studies have predicted many new ternary nitrides,
revealing synthetic opportunities in this underexplored phase space. However,
synthesizing new ternary nitrides is difficult, in part because intermediate
and product phases often have high cohesive energies that inhibit diffusion.
Here, we report the synthesis of two new phases, calcium zirconium nitride
(CaZrN) and calcium hafnium nitride (CaHfN), by solid state metathesis
reactions between CaN and Cl ( = Zr, Hf). Although the
reaction nominally proceeds to the target phases in a 1:1 ratio of the
precursors via CaN + Cl CaN + 2 CaCl,
reactions prepared this way result in Ca-poor materials (CaN,
). A small excess of CaN (ca. 20 mol\%) is needed to yield
stoichiometric CaN, as confirmed by high-resolution synchrotron powder
X-ray diffraction. In situ synchrotron X-ray diffraction studies reveal that
nominally stoichiometric reactions produce Zr intermediates early in the
reaction pathway, and the excess CaN is needed to reoxidize Zr
intermediates back to the Zr oxidation state of CaZrN. Analysis of
computationally-derived chemical potential diagrams rationalizes this synthetic
approach and its contrast from the synthesis of MgZrN. These findings
additionally highlight the utility of in situ diffraction studies and
computational thermochemistry to provide mechanistic guidance for synthesis
The Nachtlichter app: a citizen science tool for documenting outdoor light sources in public space
The relationship between satellite based measurements of city radiance at night and the numbers and types of physical lights installed on the ground is not well understood. Here we present the "Nachtlichter app", which was developed to enable citizen scientists to classify and count light sources along street segments over large spatial scales. The project and app were co-designed: citizen scientists played key roles in the app development, testing, and recruitment, as well as in analysis of the data. In addition to describing the app itself and the data format, we provide a general overview of the project, including training materials, data cleaning, and the result of some basic data consistency checks
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
A História da Alimentação: balizas historiográficas
Os M. pretenderam traçar um quadro da História da Alimentação, não como um novo ramo epistemológico da disciplina, mas como um campo em desenvolvimento de práticas e atividades especializadas, incluindo pesquisa, formação, publicações, associações, encontros acadêmicos, etc. Um breve relato das condições em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biológica, a econômica, a social, a cultural e a filosófica!, assim como da identificação das contribuições mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histórica, foi ela organizada segundo critérios morfológicos. A seguir, alguns tópicos importantes mereceram tratamento à parte: a fome, o alimento e o domínio religioso, as descobertas européias e a difusão mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rápido balanço crítico da historiografia brasileira sobre o tema
Combinatorial synthesis of cation-disordered manganese tin nitride MnSnN thin films with magnetic and semiconducting properties
Magnetic semiconductors may soon improve the energy efficiency of computers,
but materials exhibiting these dual properties remain underexplored. Here, we
report the computational prediction and realization of a new magnetic and
semiconducting material, MnSnN, via combinatorial sputtering of thin films.
Grazing incidence wide angle X-ray scattering and laboratory X-ray diffraction
studies show a wide composition tolerance for this wurtzite-like MnSnN,
ranging from Mn/(Mn+Sn) \% with cation disorder across this
composition space. Magnetic susceptibility measurements reveal a
low-temperature transition ( K) for MnSnN and
strong antiferromagnetic correlations, although the ordering below this
transition may be complex. This finding contrasts with bulk MnSiN and
MnGeN, which exhibited antiferromagnetic ordering above 400 K in previous
studies. Spectroscopic ellipsometry identifies an optical absorption onset of 1
eV for the experimentally-synthesized phase exhibiting cation disorder,
consistent with the computationally-predicted 1.2 eV bandgap for the
cation-ordered structure. Electronic conductivity measurements confirm the
semiconducting nature of this new phase by showing increasing conductivity with
increasing temperature. This work adds to the set of known semiconductors that
are paramagnetic at room temperature and will help guide future work targeted
at controlling the structure and properties of semiconducting materials that
exhibit magnetic behavior
Solution and Solid State Structural Chemistry of Th(IV) and U(IV) 4‑Hydroxybenzoates
Organic
ligands with carboxylate functionalities have been shown to affect
the solubility, speciation, and overall chemical behavior of tetravalent
metal ions. While many reports have focused on actinide complexation
by relatively simple monocarboxylates such as amino acids, in this
work we examined Th(IV) and U(IV) complexation by 4-hydroxybenzoic
acid in water with the aim of understanding the impact that the organic
backbone has on the solution and solid state structural chemistry
of thorium(IV) and uranium(IV) complexes. Two compounds of the general
formula [An<sub>6</sub>O<sub>4</sub>(OH)<sub>4</sub>(H<sub>2</sub>O)<sub>6</sub>(4-HB)<sub>12</sub>]·<i>n</i>H<sub>2</sub>O [An = Th (<b>Th-1</b>) and U (<b>U-1</b>); 4-HB = 4-hydroxybenzoate]
were synthesized via room-temperature reactions of AnCl<sub>4</sub> and 4-hydroxybenzoic acid in water. Solid state structures were
determined by single-crystal X-ray diffraction, and the compounds
were further characterized by Raman, infrared, and optical spectroscopies
and thermogravimetry. The magnetism of <b>U-1</b> was also examined.
The structures of the Th and U compounds are isomorphous and are built
from ligand-decorated oxo/hydroxo-bridged hexanuclear units. The relationship
between the building units observed in the solid state structure of <b>U-1</b> and those that exist in solution prior to crystallization
as well as upon dissolution of <b>U-1</b> in nonaqueous solvents
was investigated using small-angle X-ray scattering, ultraviolet–visible
optical spectroscopy, and dynamic light scattering. The evolution
of U solution speciation as a function of reaction time and temperature
was examined. Such effects as well as the impact of the ligand on
the formation and evolution of hexanuclear U(IV) clusters to UO<sub>2</sub> nanoparticles compared to prior reported monocarboxylate
ligand systems are discussed. Unlike prior reported syntheses of Th
and U(IV) hexamers where the pH was adjusted to ∼2 and 3, respectively,
to drive hydrolysis, hexamer formation with the HB ligand appears
to be promoted only by the ligand