11 research outputs found

    Comprehensive expression map of transcription regulators in the adult zebrafish telencephalon reveals distinct neurogenic niches

    No full text
    International audienceThe zebrafish has become a model to study adult vertebrate neurogenesis. In particular, the adult telencephalon has been an intensely studied structure in the zebrafish brain. Differential expression of transcriptional regulators (TRs) is a key feature of development and tissue homeostasis. Here we report an expression map of 1,202 TR genes in the telencephalon of adult zebrafish. Our results are summarized in a database with search and clustering functions to identify genes expressed in particular regions of the telencephalon. We classified 562 genesinto 13 distinct patterns, including genes expressed in the proliferative zone. The remaining 640 genes displayed unique and complex patterns of expression and could thus not be grouped into distinct classes. The neurogenic ventricular regions express overlapping but distinctsets of TR genes, suggesting regional differences in the neurogenic niches in the telencephalon. In summary, the small telencephalon of the zebrafish shows a remarkable complexity in TR gene expression. The adult zebrafish telencephalon has become a model to study neurogenesis. We established the expression pattern of more than 1200 transcription regulators (TR) in the adult telencephalon. The neurogenic regions express overlapping but distinct sets of TR genes suggesting regional differences in the neurogenic potential

    The helix-loop-helix protein id1 controls stem cell proliferation during regenerative neurogenesis in the adult zebrafish telencephalon.

    No full text
    International audienceThe teleost brain has the remarkable ability to generate new neurons and to repair injuries during adult life stages. Maintaining life-long neurogenesis requires careful management of neural stem cell pools. In a genome-wide expression screen for transcription regulators, the id1 gene, encoding a negative regulator of E-proteins, was found to be upregulated in response to injury. id1 expression was mapped to quiescent type I neural stem cells in the adult telencephalic stem cell niche. Gain and loss of id1 function in vivo demonstrated that Id1 promotes stem cell quiescence. The increased id1 expression observed in neural stem cells in response to injury appeared independent of inflammatory signals, suggesting multiple antagonistic pathways in the regulation of reactive neurogenesis. Together, we propose that Id1 acts to maintain the neural stem cell pool by counteracting neurogenesis-promoting signals

    Fluorescence-activated cell sorting-based isolation and characterization of neural stem cells from the adult zebrafish telencephalon.

    No full text
    Adult mammalian brain, including humans, has rather limited addition of new neurons and poor regenerative capacity. In contrast, neural stem cells (NSC) with glial identity and neurogenesis are highly abundant throughout the adult zebrafish brain. Importantly, the activation of NSC and production of new neurons in response to injuries lead to the brain regeneration in zebrafish brain. Therefore, understanding of the molecular pathways regulating NSC behavior in response to injury is crucial in order to set the basis for experimental modification of these pathways in glial cells after injury in the mammalian brain and to elicit neuronal regeneration. Here, we describe the procedure that we successfully used to prospectively isolate NSCs from adult zebrafish telencephalon, extract RNA, and prepare cDNA libraries for next generation sequencing (NGS) and full transcriptome analysis as the first step toward understanding regulatory mechanisms leading to restorative neurogenesis in zebrafish. Moreover, we describe an alternative approach to analyze antigenic properties of NSC in the adult zebrafish brain using intracellular fluorescence activated cell sorting (FACS). We employ this method to analyze the number of proliferating NSCs positive for proliferating cell nuclear antigen (PCNA) in the prospectively isolated population of stem cells
    corecore