243 research outputs found
Experimental study of internal wave generation by convection in water
We experimentally investigate the dynamics of water cooled from below at 0^oC
and heated from above. Taking advantage of the unusual property that water's
density maximum is at about 4^oC, this set-up allows us to simulate in the
laboratory a turbulent convective layer adjacent to a stably stratified layer,
which is representative of atmospheric and stellar conditions. High precision
temperature and velocity measurements are described, with a special focus on
the convectively excited internal waves propagating in the stratified zone.
Most of the convective energy is at low frequency, and corresponding waves are
localized to the vicinity of the interface. However, we show that some energy
radiates far from the interface, carried by shorter horizontal wavelength,
higher frequency waves. Our data suggest that the internal wave field is
passively excited by the convective fluctuations, and the wave propagation is
correctly described by the dissipative linear wave theory
Super-resolution in map-making based on a physical instrument model and regularized inversion. Application to SPIRE/Herschel
We investigate super-resolution methods for image reconstruction from data
provided by a family of scanning instruments like the Herschel observatory. To
do this, we constructed a model of the instrument that faithfully reflects the
physical reality, accurately taking the acquisition process into account to
explain the data in a reliable manner. The inversion, ie the image
reconstruction process, is based on a linear approach resulting from a
quadratic regularized criterion and numerical optimization tools. The
application concerns the reconstruction of maps for the SPIRE instrument of the
Herschel observatory. The numerical evaluation uses simulated and real data to
compare the standard tool (coaddition) and the proposed method. The inversion
approach is capable to restore spatial frequencies over a bandwidth four times
that possible with coaddition and thus to correctly show details invisible on
standard maps. The approach is also applied to real data with significant
improvement in spatial resolution.Comment: Astronomy & Astrophysic
Correlated Anisotropies in the Cosmic Far-Infrared Background Detected by MIPS/Spitzer: Constraint on the Bias
We report the detection of correlated anisotropies in the Cosmic Far-Infrared
Background at 160 microns. We measure the power spectrum in the Spitzer/SWIRE
Lockman Hole field. It reveals unambiguously a strong excess above cirrus and
Poisson contributions, at spatial scales between 5 and 30 arcminutes,
interpreted as the signature of infrared galaxy clustering. Using our model of
infrared galaxy evolution we derive a linear bias b=1.74 \pm 0.16. It is a
factor 2 higher than the bias measured for the local IRAS galaxies. Our model
indicates that galaxies dominating the 160 microns correlated anisotropies are
at z~1. This implies that infrared galaxies at high redshifts are biased
tracers of mass, unlike in the local Universe.Comment: ApJ Letters, in pres
Predation on the Rosario Red-legged Frog, Eleutherodactylus zugi (Eleutherodactylidae), by the Cuban Mosquitofish, Gambusia punctata (Poeciliidae) in western Cuba
In-depth study of moderately young but extremely red, very dusty substellar companion HD206893B
Accepted for publication in Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.The substellar companion HD206893b has recently been discovered by direct imaging of its disc-bearing host star with the SPHERE instrument. We investigate the atypical properties of the companion, which has the reddest near-infrared colours among all known substellar objects, either orbiting a star or isolated, and we provide a comprehensive characterisation of the host star-disc-companion system. We conducted a follow-up of the companion with adaptive optics imaging and spectro-imaging with SPHERE, and a multiinstrument follow-up of its host star. We obtain a R=30 spectrum from 0.95 to 1.64 micron of the companion and additional photometry at 2.11 and 2.25 micron. We carried out extensive atmosphere model fitting for the companions and the host star in order to derive their age, mass, and metallicity. We found no additional companion in the system in spite of exquisite observing conditions resulting in sensitivity to 6MJup (2MJup) at 0.5" for an age of 300 Myr (50 Myr). We detect orbital motion over more than one year and characterise the possible Keplerian orbits. We constrain the age of the system to a minimum of 50 Myr and a maximum of 700 Myr, and determine that the host-star metallicity is nearly solar. The comparison of the companion spectrum and photometry to model atmospheres indicates that the companion is an extremely dusty late L dwarf, with an intermediate gravity (log g 4.5-5.0) which is compatible with the independent age estimate of the system. Though our best fit corresponds to a brown dwarf of 15-30 MJup aged 100-300 Myr, our analysis is also compatible with a range of masses and ages going from a 50 Myr 12MJup planetary-mass object to a 50 MJup Hyades-age brown dwarf...Peer reviewedFinal Accepted Versio
Peering into the Young Planetary System AB Pic. Atmosphere, Orbit, Obliquity & Second Planetary Candidate
We aim to revisit the system AB Pic which has a known companion at the
exoplanet/ brown-dwarf boundary. We based this study on a rich set of
observations to investigate the companion's orbit and atmosphere. We composed a
spectrum of AB Pic b merging archival VLT/SINFONI K-band data, with published
spectra at J and H-band (SINFONI) and Lp-band (Magellan-AO), and photometric
measurements (HST and Spitzer). We modeled the spectrum with ForMoSA, based on
two atmospheric models: ExoREM and BT-SETTL13. We determined the orbital
properties of b fitting the astrometric measurements from NaCo (2003 and 2004)
and SPHERE (2015). The orbital solutions favor a semi-major axis of 190au
viewed edge-on. With Exo-REM, we derive a T of 170050K and surface
gravity of 4.50.3dex, consistent with previous works, and we report for
the first time a C/O ratio of 0.580.08 (solar). The posteriors are
sensitive to the wavelength interval and the family of models used. Given the
2.1hr rotation period and our vsin(i) of 73km/s, we estimate for the
first time the true obliquity to be 45 or 135deg, indicating a
significant misalignment between the planet's spin and orbit orientations.
Finally, the existence of a proper motion anomaly between the Hipparcos and
Gaia eDR3 compared to our SPHERE detection limits and adapted radial velocity
limits indicate the existence of a 6M inner planet orbiting from
2 to 10au (40-200mas). The possible existence of an inner companion, together
with the likely miss-alignment of the spin axis orientation, strongly favor a
formation path by gravitational instability or core accretion within a disk
closer inside followed by dynamical interactions. Confirmation and
characterization of planet c and access to a broader wavelength coverage for
planet b will be essential to probe the uncertainties associated with the
parameters.Comment: 17 pages, 13 Figures, 6 Tables. Accepted for publication in A&A (31
of October
Direct Discovery of the Inner Exoplanet in the Hd 206893 System: Evidence for Deuterium Burning in a Planetary-Mass Companion
Aims. HD 206893 is a nearby debris disk star that hosts a previously identified brown dwarf companion with an orbital separation of ~ 10 au. Long-Term precise radial velocity (RV) monitoring, as well as anomalies in the system proper motion, has suggested the presence of an additional, inner companion in the system. Methods. Using information from ongoing precision RV measurements with the HARPS spectrograph, as well as Gaia host star astrometry, we have undertaken a multi-epoch search for the purported additional planet using the VLTI/GRAVITY instrument. Results. We report a high-significance detection over three epochs of the companion HD 206893c, which shows clear evidence for Keplerian orbital motion. Our astrometry with ~ 50-100 µarcsec precision afforded by GRAVITY allows us to derive a dynamical mass of 12.7MJup and an orbital separation of 3.53 au for HD 206893c. Our fits to the orbits of both companions in the system use both Gaia astrometry and RVs to also provide a precise dynamical estimate of the previously uncertain mass of the B component, and therefore allow us to derive an age of 155 ± 15 Myr for the system. We find that theoretical atmospheric and evolutionary models that incorporate deuterium burning for HD 206893c, parameterized by cloudy atmosphere models as well as a hybrid sequence (encompassing a transition from cloudy to cloud-free), provide a good simultaneous fit to the luminosity of both HD 206893B and c. Thus, accounting for both deuterium burning and clouds is crucial to understanding the luminosity evolution of HD 206893c. Conclusions. In addition to using long-Term RV information, this effort is an early example of a direct imaging discovery of a bona fide exoplanet that was guided in part by Gaia astrometry. Utilizing Gaia astrometry is expected to be one of the primary techniques going forward for identifying and characterizing additional directly imaged planets. In addition, HD 206893c is an example of an object narrowly straddling the deuterium-burning limit but unambiguously undergoing deuterium burning. Additional discoveries like this may therefore help clarify the discrimination between a brown dwarf and an extrasolar planet. Lastly, this discovery is another example of the power of optical interferometry to directly detect and characterize extrasolar planets where they form, at ice-line orbital separations of 2-4 au
The high-albedo, low polarization disk around HD 114082 harbouring a Jupiter-sized transiting planet
We present new optical and near-IR images of debris disk around the F-type
star HD 114082. We obtained direct imaging observations and analysed the TESS
photometric time series data of this target with a goal to search for planetary
companions and to characterise the morphology of the debris disk and the
scattering properties of dust particles. HD 114082 was observed with the
VLT/SPHERE instrument: the IRDIS camera in the K band together with the IFS in
the Y, J and H band using the ADI technique as well as IRDIS in the H band and
ZIMPOL in the I_PRIME band using the PDI technique. The scattered light images
were fitted with a 3D model for single scattering in an optically thin dust
disk. We performed aperture photometry in order to derive the scattering and
polarized phase functions, polarization fraction and spectral scattering albedo
for the dust particles in the disk. This method was also used to obtain the
reflectance spectrum of the disk to retrieve the disk color and study the dust
reflectivity in comparison to the debris disk HD 117214. We also performed the
modeling of the HD 114082 light curve measured by TESS using the models for
planet transit and stellar activity to put constraints on radius of the
detected planet and its orbit. The debris disk appears as an axisymmetric
debris belt with a radius of ~0.37 (35 au), inclination of ~83 and a
wide inner cavity. Dust particles in HD 114082 have a maximum polarization
fraction of ~17% and a high reflectivity which results in a spectral scattering
albedo of 0.65. The analysis of TESS photometric data reveals a transiting
planetary companion to HD 114082 with a radius of 1~ on an
orbit with a semi-major axis of au. Combining different data, we
reach deep sensitivity limits in terms of companion masses down to ~5 at 50 au, and ~10 at 30 au from the central star.Comment: 27 page
- …
