91 research outputs found

    Obesity-Induced Colorectal Cancer Is Driven by Caloric Silencing of the Guanylin-GUCY2C Paracrine Signaling Axis.

    Get PDF
    Obesity is a well-known risk factor for colorectal cancer but precisely how it influences risks of malignancy remains unclear. During colon cancer development in humans or animals, attenuation of the colonic cell surface receptor guanylyl cyclase C (GUCY2C) that occurs due to loss of its paracrine hormone ligand guanylin contributes universally to malignant progression. In this study, we explored a link between obesity and GUCY2C silencing in colorectal cancer. Using genetically engineered mice on different diets, we found that diet-induced obesity caused a loss of guanylin expression in the colon with subsequent GUCY2C silencing, epithelial dysfunction, and tumorigenesis. Mechanistic investigations revealed that obesity reversibly silenced guanylin expression through calorie-dependent induction of endoplasmic reticulum stress and the unfolded protein response in intestinal epithelial cells. In transgenic mice, enforcing specific expression of guanylin in intestinal epithelial cells restored GUCY2C signaling, eliminating intestinal tumors associated with a high calorie diet. Our findings show how caloric suppression of the guanylin-GUCY2C signaling axis links obesity to negation of a universal tumor suppressor pathway in colorectal cancer, suggesting an opportunity to prevent colorectal cancer in obese patients through hormone replacement with the FDA-approved oral GUCY2C ligand linaclotide

    Rapid counting and spectral sorting of live coral larvae using large-particle flow cytometry

    Get PDF
    Research with coral embryos and larvae often requires laborious manual counting and sorting of individual specimens, usually via microscopy. Because many coral species spawn only once per year during a narrow temporal window, sample processing is a time-limiting step for research on the early life-history stages of corals. Flow cytometry, an automated technique for measuring and sorting particles, cells, and cell-clusters, is a potential solution to this bottleneck. Yet most flow cytometers do not accommodate live organisms of the size of most coral embryos (> 250 µm), and sample processing is often destructive. Here we tested the ability of a large-particle flow cytometer with a gentle pneumatic sorting mechanism to process and spectrally sort live and preserved Montipora capitata coral embryos and larvae. Average survival rates of mechanically-sorted larvae were over 90% and were comparable to those achieved by careful hand-sorting. Preserved eggs and embryos remained intact throughout the sorting process and were successfully sorted based on real-time size and fluorescence detection. In-line bright-field microscopy images were captured for each sample object as it passed through the flow-cell, enabling the identification of early-stage embryos (2-cell to morula stage). Samples were counted and sorted at an average rate of 4 s larva−1 and as high as 0.2 s larva−1 for high-density samples. Results presented here suggest that large-particle flow cytometry has the potential to significantly increase efficiency and accuracy of data collection and sample processing during time-limited coral spawning events, facilitating larger-scale and higher-replication studies with an expanded number of species

    Adding tsetse control to medical activities contributes to decreasing transmission of sleeping sickness in the Mandoul focus (Chad)

    Get PDF
    Background Gambian sleeping sickness or HAT (human African trypanosomiasis) is a neglected tropical disease caused by Trypanosoma brucei gambiense transmitted by riverine species of tsetse. A global programme aims to eliminate the disease as a public health problem by 2020 and stop transmission by 2030. In the South of Chad, the Mandoul area is a persistent focus of Gambian sleeping sickness where around 100 HAT cases were still diagnosed and treated annually until 2013. Pre-2014, control of HAT relied solely on case detection and treatment, which lead to a gradual decrease in the number of cases of HAT due to annual screening of the population. Methods Because of the persistence of transmission and detection of new cases, we assessed whether the addition of vector control to case detection and treatment could further reduce transmission and consequently, reduce annual incidence of HAT in Mandoul. In particular, we investigated the impact of deploying ‘tiny targets’ which attract and kill tsetse. Before tsetse control commenced, a census of the human population was conducted and their settlements mapped. A pre-intervention survey of tsetse distribution and abundance was implemented in November 2013 and 2600 targets were deployed in the riverine habitats of tsetse in early 2014, 2015 and 2016. Impact on tsetse and on the incidence of sleeping sickness was assessed through nine tsetse monitoring surveys and four medical surveys of the human population in 2014 and 2015. Mathematical modelling was used to assess the relative impact of tsetse control on incidence compared to active and passive screening. Findings The census indicated that a population of 38674 inhabitants lived in the vicinity of the Mandoul focus. Within this focus in November 2013, the vector is Glossina fuscipes fuscipes and the mean catch of tsetse from traps was 0.7 flies/trap/day (range, 0-26). The catch of tsetse from 44 sentinel biconical traps declined after target deployment with only five tsetse being caught in nine surveys giving a mean catch of 0.005 tsetse/trap/day. Modelling indicates that 70.4% (95% CI: 51-95%) of the reduction in reported cases between 2013 and 2015 can be attributed to vector control with the rest due to medical intervention. Similarly tiny targets are estimated to have reduced new infections dramatically with 62.8% (95% CI: 59–66%) of the reduction due to tsetse control, and 8.5% (95% 8–9%) to enhanced passive detection. Model predictions anticipate that elimination as a public health problem could be achieved by 2018 in this focus if vector control and screening continue at the present level and, furthermore, there may have been virtually no transmission since 2015. Conclusion This work shows that tiny targets reduced the numbers of tsetse in this focus in Chad, which may have interrupted transmission and the combination of tsetse control to medical detection and treatment has played a major role in reducing in HAT incidence in 2014 and 2015

    Mesobot : An Autonomous Underwater Vehicle for Tracking and Sampling Midwater Targets

    Get PDF
    Mesobot, a new class of autonomous underwater vehicle, will address specific unmet needs for observing slow-moving targets in the midwater ocean. Mesobot will track targets such as zooplankton, fish, and descending particle aggregates using a control system based on stereo cameras and a combination of thrusters and a variable buoyancy system. The vehicle will also be able to collect biogeochemical and environmental DNA (eDNA) samples using a pumped filter sampler

    Improved control of SARS-CoV-2 by treatment with nucleocapsid-specific monoclonal antibody

    Get PDF
    The SARS-CoV-2 spike protein is the main antigen in all approved COVID-19 vaccines and is also the only target for monoclonal antibody therapies. Immune responses to other viral antigens are generated after SARS-CoV-2 infection, but their contribution to the antiviral response remains unclear. Here, we interrogate whether nucleocapsid-specific antibodies can improve protection against SARSCoV-2. We first immunized mice with a nucleocapsid-based vaccine, and then transferred sera from these mice into naïve mice, followed by challenge with SARS-CoV-2. We show that mice that received nucleocapsid-specific sera or a nucleocapsid-specific monoclonal antibody (mAb) exhibited enhanced control of SARS-CoV-2. Nucleocapsid-specific antibodies elicited NK-mediated antibodydependent cellular cytotoxicity (ADCC) against infected cells. These findings provide the first demonstration in the coronavirus literature that antibody responses specific to the nucleocapsid protein can improve viral clearance, providing a rationale for the clinical evaluation of nucleocapsid-based monoclonal antibody therapies to treat COVID-19

    Update of transmission modelling and projections of gambiense human African trypanosomiasis in the Mandoul focus, Chad

    Get PDF
    In recent years, a programme of vector control, screening and treatment of gambiense human African trypanosomiasis (gHAT) infections led to a rapid decline in cases in the Mandoul focus of Chad. To represent the biology of transmission between humans and tsetse, we previously developed a mechanistic transmission model, fitted to data between 2000 and 2013 which suggested that transmission was interrupted by 2015. The present study outlines refinements to the model to: (1) Assess whether elimination of transmission has already been achieved despite low-level case reporting; (2) quantify the role of intensified interventions in transmission reduction; and (3) predict the trajectory of gHAT in Mandoul for the next decade under different strategies. Method Our previous gHAT transmission model for Mandoul was updated using human case data (2000–2019) and a series of model refinements. These include how diagnostic specificity is incorporated into the model and improvements to the fitting method (increased variance in observed case reporting and how underreporting and improvements to passive screening are captured). A side-by-side comparison of fitting to case data was performed between the models. Results We estimated that passive detection rates have increased due to improvements in diagnostic availability in fixed health facilities since 2015, by 2.1-fold for stage 1 detection, and 1.5-fold for stage 2. We find that whilst the diagnostic algorithm for active screening is estimated to be highly specific (95% credible interval (CI) 99.9–100%, Specificity = 99.9%), the high screening and low infection levels mean that some recently reported cases with no parasitological confirmation might be false positives. We also find that the focus-wide tsetse reduction estimated through model fitting (95% CI 96.1–99.6%, Reduction = 99.1%) is comparable to the reduction previously measured by the decline in tsetse catches from monitoring traps. In line with previous results, the model suggests that transmission was interrupted in 2015 due to intensified interventions. Conclusions We recommend that additional confirmatory testing is performed in Mandoul to ensure the endgame can be carefully monitored. More specific measurement of cases, would better inform when it is safe to stop active screening and vector control, provided there is a strong passive surveillance system in place

    Health economic evaluation of strategies to eliminate gambiense human African trypanosomiasis in the Mandoul disease focus of Chad

    Get PDF
    Human African trypanosomiasis, caused by the gambiense subspecies of Trypanosoma brucei (gHAT), is a deadly parasitic disease transmitted by tsetse. Partners worldwide have stepped up efforts to eliminate the disease, and the Chadian government has focused on the previously high-prevalence setting of Mandoul. In this study, we evaluate the economic efficiency of the intensified strategy that was put in place in 2014 aimed at interrupting the transmission of gHAT, and we make recommendations on the best way forward based on both epidemiological projections and cost-effectiveness. In our analysis, we use a dynamic transmission model fit to epidemiological data from Mandoul to evaluate the cost-effectiveness of combinations of active screening, improved passive screening (defined as an expansion of the number of health posts capable of screening for gHAT), and vector control activities (the deployment of Tiny Targets to control the tsetse vector). For cost-effectiveness analyses, our primary outcome is disease burden, denominated in disability-adjusted life-years (DALYs), and costs, denominated in 2020 US.AlthoughactiveandpassivescreeninghaveenabledmorerapiddiagnosisandaccessibletreatmentinMandoul,theadditionofvectorcontrolprovidedgoodvalueformoney(atlessthan. Although active and passive screening have enabled more rapid diagnosis and accessible treatment in Mandoul, the addition of vector control provided good value-for-money (at less than 750/DALY averted) which substantially increased the probability of reaching the 2030 elimination target for gHAT as set by the World Health Organization. Our transmission modelling and economic evaluation suggest that the gains that have been made could be maintained by passive screening. Our analysis speaks to comparative efficiency, and it does not take into account all possible considerations; for instance, any cessation of ongoing active screening should first consider that substantial surveillance activities will be critical to verify the elimination of transmission and to protect against the possible importation of infection from neighbouring endemic foci

    Characterizing Long COVID: Deep Phenotype of a Complex Condition.

    Get PDF
    BACKGROUND: Numerous publications describe the clinical manifestations of post-acute sequelae of SARS-CoV-2 (PASC or long COVID ), but they are difficult to integrate because of heterogeneous methods and the lack of a standard for denoting the many phenotypic manifestations. Patient-led studies are of particular importance for understanding the natural history of COVID-19, but integration is hampered because they often use different terms to describe the same symptom or condition. This significant disparity in patient versus clinical characterization motivated the proposed ontological approach to specifying manifestations, which will improve capture and integration of future long COVID studies. METHODS: The Human Phenotype Ontology (HPO) is a widely used standard for exchange and analysis of phenotypic abnormalities in human disease but has not yet been applied to the analysis of COVID-19. FINDINGS: We identified 303 articles published before April 29, 2021, curated 59 relevant manuscripts that described clinical manifestations in 81 cohorts three weeks or more following acute COVID-19, and mapped 287 unique clinical findings to HPO terms. We present layperson synonyms and definitions that can be used to link patient self-report questionnaires to standard medical terminology. Long COVID clinical manifestations are not assessed consistently across studies, and most manifestations have been reported with a wide range of synonyms by different authors. Across at least 10 cohorts, authors reported 31 unique clinical features corresponding to HPO terms; the most commonly reported feature was Fatigue (median 45.1%) and the least commonly reported was Nausea (median 3.9%), but the reported percentages varied widely between studies. INTERPRETATION: Translating long COVID manifestations into computable HPO terms will improve analysis, data capture, and classification of long COVID patients. If researchers, clinicians, and patients share a common language, then studies can be compared/pooled more effectively. Furthermore, mapping lay terminology to HPO will help patients assist clinicians and researchers in creating phenotypic characterizations that are computationally accessible, thereby improving the stratification, diagnosis, and treatment of long COVID. FUNDING: U24TR002306; UL1TR001439; P30AG024832; GBMF4552; R01HG010067; UL1TR002535; K23HL128909; UL1TR002389; K99GM145411

    A History of Drug Discovery for Treatment of Nausea and Vomiting and the Implications for Future Research.

    Get PDF
    The origins of the major classes of current anti-emetics are examined. Serendipity is a recurrent theme in discovery of their anti-emetic properties and repurposing from one indication to another is a continuing trend. Notably, the discoveries have occurred against a background of company mergers and changing anti-emetic requirements. Major drug classes include: (i) Muscarinic receptor antagonists-originated from historical accounts of plant extracts containing atropine and hyoscine with development stimulated by the need to prevent sea-sickness among soldiers during beach landings; (ii) Histamine receptor antagonists-searching for replacements for the anti-malaria drug quinine, in short supply because of wartime shipping blockade, facilitated the discovery of histamine (H1) antagonists (e.g., dimenhydrinate), followed by serendipitous discovery of anti-emetic activity against motion sickness in a patient undergoing treatment for urticaria; (iii) Phenothiazines and dopamine receptor antagonists-investigations of their pharmacology as "sedatives" (e.g., chlorpromazine) implicated dopamine receptors in emesis, leading to development of selective dopamine (D2) receptor antagonists (e.g., domperidone with poor ability to penetrate the blood-brain barrier) as anti-emetics in chemotherapy and surgery; (iv) Metoclopramide and selective 5-hydroxytryptamine3(5-HT3) receptor antagonists-metoclopramide was initially assumed to act only via D2 receptor antagonism but subsequently its gastric motility stimulant effect (proposed to contribute to the anti-emetic action) was shown to be due to 5-hydroxytryptamine4 receptor agonism. Pre-clinical studies showed that anti-emetic efficacy against the newly-introduced, highly emetic, chemotherapeutic agent cisplatin was due to antagonism at 5-HT3 receptors. The latter led to identification of selective 5-HT3 receptor antagonists (e.g., granisetron), a major breakthrough in treatment of chemotherapy-induced emesis; (v) Neurokinin1receptor antagonists-antagonists of the actions of substance P were developed as analgesics but pre-clinical studies identified broad-spectrum anti-emetic effects; clinical studies showed particular efficacy in the delayed phase of chemotherapy-induced emesis. Finally, the repurposing of different drugs for treatment of nausea and vomiting is examined, particularly during palliative care, and also the challenges in identifying novel anti-emetic drugs, particularly for treatment of nausea as compared to vomiting. We consider the lessons from the past for the future and ask why there has not been a major breakthrough in the last 20 years

    マンソン住血吸虫感染の血清診断に応用可能なタンデムリピート抗原に関する研究

    Get PDF
    The diagnosis of schistosome infection, followed by effective treatment and/or mass drug administration, is crucial to reduce the disease burden. Suitable diagnostic tests and field-applicable tools are required to sustain schistosomiasis control programs. We therefore assessed the potential of tandem repeat (TR) proteins for sero-diagnosis of Schistosoma mansoni infection using an experimental mouse model.TR genes in the genome of S. mansoni were searched in silico and 7 candidates, named SmTR1, 3, 8, 9, 10, 11 and 15, were selected. Total RNA was extracted from S. mansoni adult worms and eggs. Target TR genes were amplified, cloned, and the proteins were expressed in Escherichia coli competent cells. Female BALB/c mice were infected with 100 S. mansoni cercariae and sera were collected each week post-infection for 18. weeks. The levels of IgG antibodies to SmTR antigens were compared to those to soluble egg antigen (SEA) and to soluble worm antigen preparation (SWAP). Sera of infected mice reacted to all the antigens whereas those of naive mice did not. IgG responses to SmTR1, 3, 9 and 10 were detected at the early stage of infection. Interestingly, antibodies reacting to SmTR3, 9, 10 and 15 dramatically decreased 4. weeks after treatment with praziquantel, while those against SEA and SWAP remained elevated.Our study suggests that TR proteins, especially SmTR10, may be suitable antigens for sero-diagnosis of infection by S. mansoni and are potential markers for monitoring and surveillance of schistosomiasis, including re-infection after treatment with praziquantel.長崎大学学位論文 学位記番号:博(医歯薬)甲第803号 学位授与年月日:平成27年9月18日Author: Yombo Dan Justin Kalenda, Kentaro Kato, Yasuyuki Goto, Yoshito Fujii, Shinjiro HamanoCitation: Parasitology International, 64(6), pp.503-512; 2015Nagasaki University (長崎大学)課程博
    corecore