216 research outputs found

    Metabolic Profiling Reveals Biochemical Pathways Responsible for Eelgrass Response to Elevated CO\u3csub\u3e2\u3c/sub\u3e and Temperature

    Get PDF
    As CO2 levels in Earth’s atmosphere and oceans steadily rise, varying organismal responses may produce ecological losers and winners. Increased ocean CO2 can enhance seagrass productivity and thermal tolerance, providing some compensation for climate warming. However, the metabolic shifts driving the positive response to elevated CO2 by these important ecosystem engineers remain unknown. We analyzed whole-plant performance and metabolic profiles of two geographically distinct eelgrass (Zostera marina L.) populations in response to CO2 enrichment. In addition to enhancing overall plant size, growth and survival, CO2 enrichment increased the abundance of Calvin Cycle and nitrogen assimilation metabolites while suppressing the abundance of stress-related metabolites. Overall metabolome differences between populations suggest that some eelgrass phenotypes may be better suited than others to cope with an increasingly hot and sour sea. Our results suggest that seagrass populations will respond variably, but overall positively, to increasing CO2 concentrations, generating negative feedbacks to climate change

    Modulation of human macrophage responses to mycobacterium tuberculosis by silver nanoparticles of different size and surface modification

    No full text
    Exposure to silver nanoparticles (AgNP) used in consumer products carries potential health risks including increased susceptibility to infectious pathogens. Systematic assessments of antimicrobial macrophage immune responses in the context of AgNP exposure are important because uptake of AgNP by macrophages may lead to alterations of innate immune cell functions. In this study we examined the effects of exposure to AgNP with different particle sizes (20 and 110 nm diameters) and surface chemistry (citrate or polyvinlypyrrolidone capping) on cellular toxicity and innate immune responses against Mycobacterium tuberculosis (M.tb) by human monocyte-derived macrophages (MDM). Exposures of MDM to AgNP significantly reduced cellular viability, increased IL8 and decreased IL10 mRNA expression. Exposure of M.tb-infected MDM to AgNP suppressed M.tb-induced expression of IL1B, IL10, and TNFA mRNA. Furthermore, M.tb-induced IL-1β, a cytokine critical for host resistance to M.tb, was inhibited by AgNP but not by carbon black particles indicating that the observed immunosuppressive effects of AgNP are particle specific. Suppressive effects of AgNP on the M.tb-induced host immune responses were in part due to AgNP-mediated interferences with the TLR signaling pathways that culminate in the activation of the transcription factor NF-κB. AgNP exposure suppressed M.tb-induced expression of a subset of NF-κB mediated genes (CSF2, CSF3, IFNG, IL1A, IL1B, IL6, IL10, TNFA, NFKB1A). In addition, AgNP exposure increased the expression of HSPA1A mRNA and the corresponding stress-induced Hsp72 protein. Up-regulation of Hsp72 by AgNP can suppress M.tb-induced NF-κB activation and host immune responses. The observed ability of AgNP to modulate infectious pathogen-induced immune responses has important public health implications

    Effect of dried distillers grains (DDGS) on diet digestibility, growth performance, and carcass characteristics in Creole wool lambs fed finishing diets

    Get PDF
    Dried corn distillers grains with solubles (DDGS) can partially replace grains and forages in diets for ruminants. The objective of this research was to evaluate the effect of replacing grains and soybean meal with DDGS (0%, 15%, 30% and 45%) in the diet of lambs. Thirty-two native lambs were used (initial bodyweight = 28.6 ± 2.19 kg) in a completely randomized design. Initial body weight was a co-variable, and the means were compared with the Tukey test. The dry matter intake was significantly higher in DDGS containing diet than in the control treatment. The daily weight gain was higher in the diets with 15% of DDGS compared with the control. Dry matter digestibility was lower by 7% with 45% of DDGS. The hot and cold carcass weights were significantly higher by 8% in DDGS treatments compared to the control. The inclusion of increasing levels of DDGS in the diet of fattening lambs increased their dry matter intake, improved carcass weight, and did not adversely affect carcass characteristics.Keywords: Carcass, by-products, animal production, ruminant nutritio

    Combining interdisciplinarity and creative design - A powerful strategy to increase palliative care awareness within a university community

    Get PDF
    Society’s understanding of palliative care has room for improvement. Although the World Health Organisation highlighted palliative care as a human right, many people still lack access to this crucial form of treatment. The paucity of understanding and social discussion surrounding palliative care has, moreover, negatively impacted its development and implementation. This study therefore aims to construct a strategy that will empower a specific community to solve their own palliative care-related misunderstandings. Using Participatory Action Research and Design Thinking methodologies and adopting the strategy of Public Engagement in Responsible Research and Innovation, a design group worked for three months through five virtual focus groups. Moving through the phases of empathizing, defining, ideation, prototyping, and testing, the design group generated 33 ideas to address palliative care-related problems. Ideas related to self- learning, the use of technology, and the exchange of personal experiences are highlighted as innovative ways to promote palliative care. The design group adopted a variety of strategies, used disruptive tools, and created and tested rapid prototypes to discover novel solutions. This method of working, centred on interdisciplinarity and creativity, presents an efficient way to involve the members of a community in solving their own problems

    Performance evaluation of a multiscale modelling system applied to particulate matter dispersion in a real traffic hot spot in Madrid (Spain)

    Get PDF
    Urban air pollution is one of the most important environmental problems nowadays. Understanding urban pollution is rather challenging due to different factors that produce a strongly heterogeneous pollutant distribution within streets. Observed concentrations depend on processes occurring at a wide range of spatial and temporal scales, complex wind flow and turbulence patterns induced by urban obstacles and irregular traffic emissions. The main objective of this paper is to model particulate matter dispersion at microscale while considering the effects of mesoscale processes. Computational Fluid Dynamic (CFD) PM10 simulations were performed taking into account high spatial resolution traffic emissions from a microscale traffic model and inlet vertical profiles of meteorological variables from Weather Research and Forecasting (WRF) model. This modelling system is evaluated by using meteorological and PM10 concentration data from intensive experimental campaigns carried out on 25th February and 6th July, 2015 in a real urban traffic hot-spot in Madrid. The effect of uncertainties in the inlet profiles from mesoscale input data on microscale results is assessed. Additionally, the importance of the sensible surface heat fluxes (SHF) provided by WRF and the selection of an appropriate turbulent Schmidt number in the dispersion equation are investigated. The main conclusion is that the modelling system accurately reproduces PM10 dispersion imposing appropriate inputs (meteorological variables and SHF) and a suitable turbulent Schmidt number. Better agreement is found for simulation with a low turbulent Schmidt number. This approach improves the standard microscale modelling alone because more realistic boundary conditions and mesoscale processes are considered

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Legionella pneumophila induces human beta Defensin-3 in pulmonary cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Legionella pneumophila </it>is an important causative agent of severe pneumonia in humans. Human alveolar epithelium and macrophages are effective barriers for inhaled microorganisms and actively participate in the initiation of innate host defense. The beta defensin-3 (hBD-3), an antimicrobial peptide is an important component of the innate immune response of the human lung. Therefore we hypothesize that hBD-3 might be important for immune defense towards <it>L. pneumophila</it>.</p> <p>Methods</p> <p>We investigated the effects of <it>L. pneumophila </it>and different TLR agonists on pulmonary cells in regard to hBD-3 expression by ELISA. Furthermore, siRNA-mediated inhibition of TLRs as well as chemical inhibition of potential downstream signaling molecules was used for functional analysis.</p> <p>Results</p> <p><it>L. pneumophila </it>induced release of hBD-3 in pulmonary epithelium and alveolar macrophages. A similar response was observed when epithelial cells were treated with different TLR agonists. Inhibition of TLR2, TLR5, and TLR9 expression led to a decreased hBD-3 expression. Furthermore expression of hBD-3 was mediated through a JNK dependent activation of AP-1 (c-Jun) but appeared to be independent of NF-κB. Additionally, we demonstrate that hBD-3 elicited a strong antimicrobial effect on <it>L. pneumophila </it>replication.</p> <p>Conclusions</p> <p>Taken together, human pulmonary cells produce hBD-3 upon <it>L. pneumophila </it>infection via a TLR-JNK-AP-1-dependent pathway which may contribute to an efficient innate immune defense.</p

    An SNP selection strategy identified IL-22 associating with susceptibility to tuberculosis in Chinese

    Get PDF
    Recent studies showed that IL-22 plays a protective role in the host defense. However, the contribution of polymorphisms of the IL-22 gene to human TB susceptibility remains untested. We have designed a computational approach to select functional SNPs in the IL-22 gene and genotyped them in a two-stage case-control study in Chinese (479 cases and 358 controls). We found that rs2227473, an SNP in the promoter region of IL-22, is associated with TB susceptibility at both stages of our study. The SNP shows associations with p-values of 0.028 and 0.034 respectively, and a combined p-value of 0.0086, with odds ratio at 0.65 (95% confidence interval 0.45–0.90). We further validated the association with an independent cohort (413 cases and 241 controls in Chinese). Our functional studies showed that patients with A allele have significantly higher IL-22 expression than those without A allele under both non-specific and specific stimulations

    Detection of kinase domain mutations in BCR::ABL1 leukemia by ultra-deep sequencing of genomic DNA

    Get PDF
    The screening of the BCR::ABL1 kinase domain (KD) mutation has become a routine analysis in case of warning/failure for chronic myeloid leukemia (CML) and B-cell precursor acute lymphoblastic leukemia (ALL) Philadelphia (Ph)-positive patients. In this study, we present a novel DNA-based next-generation sequencing (NGS) methodology for KD ABL1 mutation detection and monitoring with a 1.0E−4 sensitivity. This approach was validated with a well-stablished RNA-based nested NGS method. The correlation of both techniques for the quantification of ABL1 mutations was high (Pearson r = 0.858, p < 0.001), offering DNA-DeepNGS a sensitivity of 92% and specificity of 82%. The clinical impact was studied in a cohort of 129 patients (n = 67 for CML and n = 62 for B-ALL patients). A total of 162 samples (n = 86 CML and n = 76 B-ALL) were studied. Of them, 27 out of 86 harbored mutations (6 in warning and 21 in failure) for CML, and 13 out of 76 (2 diagnostic and 11 relapse samples) did in B-ALL patients. In addition, in four cases were detected mutation despite BCR::ABL1 < 1%. In conclusion, we were able to detect KD ABL1 mutations with a 1.0E−4 sensitivity by NGS using DNA as starting material even in patients with low levels of disease.Tis project was funded in part by CRIS CANCER FOUNDATION
    corecore