83 research outputs found

    Fallopia japonica and Impatiens glandulifera are colonized by species-poor root-associated fungal communities but have minor impacts on soil properties in riparian habitats

    Get PDF
    Fallopia japonica and Impatiens glandulifera are major plant invaders on a global scale that often become dominant in riparian areas. However, little is known about how these species affect interactions in soil-plant systems. The aim of this study was to investigate the impact of both species on abiotic and biotic soil properties, with a special focus on fungi. We investigated eight sites along small streams invaded by F. japonica and I. glandulifera, respectively, and compared each with nearby sites dominated by the native species Urtica dioica. Three different types of samples were collected: bulk soil, rhizosphere soil and roots from invasive and native stands at each site. Bulk soil samples were analysed for soil physicochemical, microbial properties (soil microbial respiration and ergosterol) and soil arthropod abundance (Acari and Collembola). Soil respiration was also evaluated in rhizosphere samples. The fungal community composition of both bulk soil and roots were analysed using a metabarcoding approach. Soil physicochemical properties as well as soil microbial activity, fungal biomass and soil fungal operational unit taxonomic unit (OTU) richness did not differ between invaded and native riparian habitats, indicating only minor belowground impacts of the two invasive plant species. Soil microbial activity, fungal biomass and soil fungal OTU richness were rather related to the soil physicochemical properties. In contrast, Acari abundance decreased by 68% in the presence of F. japonica, while Collembola abundance increased by 11% in I. glandulifera sites. Moreover, root-associated fungal communities differed between the invasive and native plants. In F. japonica roots, fungal OTU richness of all investigated ecological groups (mycorrhiza, endophytes, parasites, saprobes) were lower compared to U. dioica. However, in I. glandulifera roots only the OTU richness of mycorrhiza and saprobic fungi was lower. Overall, our findings show that F. japonica and I. glandulifera can influence the abundance of soil arthropods and are characterized by lower OTU richness of root-associated fungi

    Copper Uptake and Its Effects on Two Riparian Plant Species, the Native Urtica dioica, and the Invasive Fallopia japonica

    Get PDF
    Copper accumulating in stream sediments can be transported to adjacent riparian habitats by flooding. Although being an essential element for plants, copper is toxic at high concentrations and restricts, among other things, plant growth. Besides copper, invasive plants, such as Fallopia japonica, which are known to be tolerant toward heavy metals, modify riparian habitats. If the tolerance of F. japonica is higher compared to native plants, this could accelerate invasion under high heavy metal stress. Therefore, we aimed to compare the effect of copper on two common riparian plants, the invasive F. japonica and the native Urtica dioica. We performed a pot experiment with a gradient from 0 to 2430 mg kg(-1) of soil copper. We hypothesized that (i) negative effects on plant growth increase with increasing soil copper concentrations with F. japonica being less affected and (ii) accumulating higher amounts of copper in plant tissues compared to U. dioica. In support of our first hypothesis, growth (height, leaf number) and biomass (above- and belowground) of F. japonica were impacted at the 810 mg kg(-1) treatment, while the growth of U. dioica was already impacted at 270 mg kg(-1). Due to 100% mortality of plants, the 2430 mg kg(-1) treatment was omitted from the analysis. In contrast, chlorophyll content slightly increased with increasing copper treatment for both species. While U. dioica accumulated more copper in total, the copper uptake by F. japonica increased more strongly after exposure compared to the control. In the 810 mg kg(-1) treatment, copper concentrations in F. japonica were up to 2238% higher than in the control but only up to 634% higher in U. dioica. Our results indicate that F. japonica might be able to more efficiently detoxify internal copper concentrations controlling heavy metal effects compared to the native species. This could give F. japonica a competitive advantage particularly in polluted areas, facilitating its invasion success

    Effects of inhomogeneities on apparent cosmological observables: "fake" evolving dark energy

    Full text link
    Using the exact Lemaitre-Bondi-Tolman solution with a non-vanishing cosmological constant Λ\Lambda, we investigate how the presence of a local spherically-symmetric inhomogeneity can affect apparent cosmological observables, such as the deceleration parameter or the effective equation of state of dark energy (DE), derived from the luminosity distance under the assumption that the real space-time is exactly homogeneous and isotropic. The presence of a local underdensity is found to produce apparent phantom behavior of DE, while a locally overdense region leads to apparent quintessence behavior. We consider relatively small large scale inhomogeneities which today are not linear and could be seeded by primordial curvature perturbations compatible with CMB bounds. Our study shows how observations in an inhomogeneous Λ\LambdaCDM universe with initial conditions compatible with the inflationary beginning, if interpreted under the wrong assumption of homogeneity, can lead to the wrong conclusion about the presence of "fake" evolving dark energy instead of Λ\Lambda.Comment: 22 pages, 19 figures,Final version to appear in European Physical Journal

    Observational constraints on unified dark matter including Hubble parameter data

    Get PDF
    We constrain a unified dark matter (UDM) model from the latest observational data. This model assumes that the dark sector is degenerate. Dark energy and dark matter are the same component. It can be described by an affine equation of state PX=p0+αρXP_X= p_0 +\alpha \rho_X. Our data set contains the newly revised H(z)H(z) data, type Ia supernovae (SNe Ia) from Union2 set, baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey (SDSS) data release 7 (DR7) galaxy sample, as well as the cosmic microwave background (CMB) observation from the 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) results. By using the Markov Chain Monte Carlo (MCMC) method, we obtain the results in a flat universe: ΩΛ\Omega_\Lambda=0.7190.0305+0.0264(1σ)0.0458+0.0380(2σ)0.719_{-0.0305}^{+0.0264}(1\sigma)_{-0.0458}^{+0.0380}(2\sigma), α\alpha=1.724.79+3.92(1σ)7.30+5.47(2σ)(×103)1.72_{-4.79}^{+3.92}(1\sigma)_{-7.30}^{+5.47}(2\sigma)(\times10^{-3}), Ωbh2\Omega_bh^2=0.02260.0011+0.0011(1σ)0.0015+0.0016(2σ)0.0226_{-0.0011}^{+0.0011}(1\sigma)_{-0.0015}^{+0.0016}(2\sigma). Moreover, when considering a non-flat universe, ΩΛ\Omega_\Lambda=0.7220.0447+0.0362(1σ)0.0634+0.0479(2σ)0.722_{-0.0447}^{+0.0362}(1\sigma)_{-0.0634}^{+0.0479}(2\sigma), α\alpha=0.2420.775+0.787(1σ)1.03+1.10(2σ)(×102)0.242_{-0.775}^{+0.787}(1\sigma)_{-1.03}^{+1.10}(2\sigma)(\times10^{-2}), Ωbh2\Omega_bh^2=0.02270.0014+0.0015(1σ)0.0018+0.0021(2σ)0.0227_{-0.0014}^{+0.0015}(1\sigma)_{-0.0018}^{+0.0021}(2\sigma), Ωk\Omega_k=0.1941.85+2.02(1σ)2.57+2.75(2σ)(×102)-0.194_{-1.85}^{+2.02}(1\sigma)_{-2.57}^{+2.75}(2\sigma)(\times10^{-2}). These give a more stringent results than before. We also give the results from other combinations of these data for comparison. The observational Hubble parameter data can give a more stringent constraint than SNe Ia. From the constraint results, we can see the parameters α\alpha and Ωk\Omega_k are very close to zero, which means a flat universe is strongly supported and the speed of sound of the dark sector seems to be zero.Comment: 13 pages, 7 figures, 2 table

    Dark energy as a mirage

    Full text link
    Motivated by the observed cosmic matter distribution, we present the following conjecture: due to the formation of voids and opaque structures, the average matter density on the path of the light from the well-observed objects changes from Omega_M ~ 1 in the homogeneous early universe to Omega_M ~ 0 in the clumpy late universe, so that the average expansion rate increases along our line of sight from EdS expansion Ht ~ 2/3 at high redshifts to free expansion Ht ~ 1 at low redshifts. To calculate the modified observable distance-redshift relations, we introduce a generalized Dyer-Roeder method that allows for two crucial physical properties of the universe: inhomogeneities in the expansion rate and the growth of the nonlinear structures. By treating the transition redshift to the void-dominated era as a free parameter, we find a phenomenological fit to the observations from the CMB anisotropy, the position of the baryon oscillation peak, the magnitude-redshift relations of type Ia supernovae, the local Hubble flow and the nucleosynthesis, resulting in a concordant model of the universe with 90% dark matter, 10% baryons, no dark energy, 15 Gyr as the age of the universe and a natural value for the transition redshift z_0=0.35. Unlike a large local void, the model respects the cosmological principle, further offering an explanation for the late onset of the perceived acceleration as a consequence of the forming nonlinear structures. Additional tests, such as quantitative predictions for angular deviations due to an anisotropic void distribution and a theoretical derivation of the model, can vindicate or falsify the interpretation that light propagation in voids is responsible for the perceived acceleration.Comment: 33 pages, 2 figs; v2: minor clarifications, results unchanged; v3: matches the version published in General Relativity and Gravitatio

    Apparent and average acceleration of the Universe

    Get PDF
    In this paper we consider the relation between the volume deceleration parameter obtained within the Buchert averaging scheme and the deceleration parameter derived from the supernova observation. This work was motivated by recent findings that showed that there are models which despite Λ=0\Lambda=0 have volume deceleration parameter qvol<0q^{vol} < 0. This opens the possibility that backreaction and averaging effects may be used as an interesting alternative explanation to the dark energy phenomenon. We have calculated qvolq^{vol} in some Lema\^itre--Tolman models. For those models which are chosen to be realistic and which fit the supernova data, we find that qvol>0q^{vol} > 0, while those models which we have been able to find which exhibit qvol<0q^{vol} < 0 turn out to be unrealistic. This indicates that care must be exercised in relating the deceleration parameter to observations.Comment: 15 pages, 5 figures; matches published versio

    Sebacinales Everywhere: Previously Overlooked Ubiquitous Fungal Endophytes

    Get PDF
    Inconspicuous basidiomycetes from the order Sebacinales are known to be involved in a puzzling variety of mutualistic plant-fungal symbioses (mycorrhizae), which presumably involve transport of mineral nutrients. Recently a few members of this fungal order not fitting this definition and commonly referred to as ‘endophytes’ have raised considerable interest by their ability to enhance plant growth and to increase resistance of their host plants against abiotic stress factors and fungal pathogens. Using DNA-based detection and electron microscopy, we show that Sebacinales are not only extremely versatile in their mycorrhizal associations, but are also almost universally present as symptomless endophytes. They occurred in field specimens of bryophytes, pteridophytes and all families of herbaceous angiosperms we investigated, including liverworts, wheat, maize, and the non-mycorrhizal model plant Arabidopsis thaliana. They were present in all habitats we studied on four continents. We even detected these fungi in herbarium specimens originating from pioneering field trips to North Africa in the 1830s/40s. No geographical or host patterns were detected. Our data suggest that the multitude of mycorrhizal interactions in Sebacinales may have arisen from an ancestral endophytic habit by specialization. Considering their proven beneficial influence on plant growth and their ubiquity, endophytic Sebacinales may be a previously unrecognized universal hidden force in plant ecosystems

    CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey

    Get PDF
    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8--1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z>1.5 to test their accuracy as standardizable candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10^9 M_\odot to z \approx 2, reaching the knee of the ultraviolet luminosity function (UVLF) of galaxies to z \approx 8. The survey covers approximately 800 arcmin^2 and is divided into two parts. The CANDELS/Deep survey (5\sigma\ point-source limit H=27.7 mag) covers \sim 125 arcmin^2 within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 5\sigma\ point-source limit of H \gtrsim 27.0 mag. Together with the Hubble Ultra Deep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are nonproprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design. The Hubble data processing and products are described in a companion paper.Comment: Submitted to Astrophysical Journal Supplement Series; Revised version, subsequent to referee repor

    CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey - The Hubble Space Telescope Observations, Imaging Data Products and Mosaics

    Get PDF
    This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z1.58z\sim1.5-8, and to study Type Ia SNe beyond z>1.5z>1.5. Five premier multi-wavelength sky regions are selected, each with extensive multiwavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 / infrared channel (WFC3/IR) and UVIS channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers \sim125 square arcminutes within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of \sim800 square arcminutes across GOODS and three additional fields (EGS, COSMOS, and UDS). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up to date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including CTE degradation for ACS, removal of electronic bias-striping present in ACS data after SM4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.Comment: 39 pages, 25 figure

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    corecore