681 research outputs found

    Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    Full text link
    This white paper summarizes the scientific opportunities for utilization of the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab. It is based on the 52 proposals recommended for approval by the Jefferson Lab Program Advisory Committee.The upgraded facility will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics.Comment: 64 page

    Orbital precession modulates interannual rainfall variability, as recorded in an Early Pleistocene speleothem

    Get PDF
    Interannual variability of African rainfall impacts local and global communities, but its past behavior and response in future climate projections are poorly understood. This is primarily due to short instrumental records and a lack of long high-resolution palaeoclimate proxy records. Here we present an annually resolved 91,000 year Early Pleistocene record of hydroclimate from the early homininbearing Makapansgat Valley, South Africa. Changes in speleothem annual band thickness are dominated by precession over four consecutive orbital cycles with strong millennial-scale periodicity. The frequency of interannual variability (2.0–6.5 yr oscillations) does not change systematically, yet its amplitude is modulated by the orbital forcing. These long-term characteristics of interannual variability are reproduced with transient climate model simulations of water balance for South Africa from the Late Pleistocene to Recent. Based on these results, we suggest that the frequency of interannual variations in southern African rainfall is likely to be stable under anthropogenic warming, but that the size of year-to-year variations may increase. We see an orbitally forced increase in the amplitude of interannual climate variability between 1.8 Ma and 1.7 Ma coincident with the first evidence for the Acheulean stone tool technology

    Measurement of the Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb−1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2ÎČ\beta measurement from B0→J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0→J/ψKS0)=(1.83±0.28)×10−5BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays

    Get PDF
    A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity

    Search for the lepton-flavor-violating decays Bs0→e±Ό∓ and B0→e±Ό∓

    Get PDF
    A search for the lepton-flavor-violating decays Bs0→e±Ό∓ and B0→e±Ό∓ is performed with a data sample, corresponding to an integrated luminosity of 1.0  fb-1 of pp collisions at √s=7  TeV, collected by the LHCb experiment. The observed number of Bs0→e±Ό∓ and B0→e±Ό∓ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0→e±Ό∓)101  TeV/c2 and MLQ(B0→e±Ό∓)>126  TeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex

    Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) and the direct CP asymmetry in B0 -> K*0 gamma

    Get PDF
    The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma and Bs0 phi gamma has been measured using an integrated luminosity of 1.0 fb-1 of pp collision data collected by the LHCb experiment at a centre-of-mass energy of sqrt(s)=7 TeV. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.23 +/- 0.06(stat.) +/- 0.04(syst.) +/- 0.10(fs/fd), where the first uncertainty is statistical, the second is the experimental systematic uncertainty and the third is associated with the ratio of fragmentation fractions fs/fd. Using the world average value for BR(B0 -> K*0 gamma), the branching fraction BR(Bs0 -> phi gamma) is measured to be (3.5 +/- 0.4) x 10^{-5}. The direct CP asymmetry in B0 -> K*0 gamma decays has also been measured with the same data and found to be A(CP)(B0 -> K*0 gamma) = (0.8 +/- 1.7(stat.) +/- 0.9(syst.))%. Both measurements are the most precise to date and are in agreement with the previous experimental results and theoretical expectations.Comment: 21 pages, 3 figues, 4 table
    • 

    corecore