195 research outputs found

    Passively Evolving Early-type Galaxies at 1.4<z<2.5 in the Hubble Ultra Deep Field

    Full text link
    We report on a complete sample of 7 luminous early-type galaxies in the Hubble Ultra Deep Field (UDF) with spectroscopic redshifts between 1.39 and 2.47 and to K<23 AB. Using the BzK selection criterion we have pre-selected a set of objects over the UDF which fulfill the photometric conditions for being passively evolving galaxies at z>1.4. Low-resolution spectra of these objects have been extracted from the HST+ACS grism data taken over the UDF by the GRAPES project. Redshift for the 7 galaxies have been identified based on the UV feature at rest frame 2640<lambda<2850 AA. This feature is mainly due to a combination of FeII, MgI and MgII absorptions which are characteristic of stellar populations dominated by stars older than about 0.5 Gyr. The redshift identification and the passively evolving nature of these galaxies is further supported by the photometric redshifts and by the overall spectral energy distribution (SED), with the ultradeep HST+ACS/NICMOS imaging revealing compact morphologies typical of elliptical/early-type galaxies. From the SED we derive stellar masses of 10^{11}Msun or larger and ages of about 1 Gyr. Their space density at =1.7 appears to be roughly a factor of 2--3 smaller than that of their local counterparts, further supporting the notion that such massive and old galaxies are already ubiquitous at early cosmic times. Much smaller effective radii are derived for some of the objects compared to local massive ellipticals, which may be due to morphological K corrections, evolution, or the presence of a central point-like source. Nuclear activity is indeed present in a subset of the galaxies, as revealed by them being hard X-ray sources, hinting to AGN activity having played a role in discontinuing star formation.Comment: 18 pages, 15 figures, ApJ in pres

    The Grizzly, September 8, 2016

    Get PDF
    Marcon Under Fire for Controversial Tweets • First-Year Class Smaller Than Usual • Ursinus Offers Gateway to Success • Ursinus\u27 Students Mourn the Loss of Beloved Wawa • History Department Welcomes New Professor • Student Researchers Spend Summer with NASA • Opinions: Ostrum to Marcon: Let\u27s Work Toward Inclusion; Students Happily Embrace Changes to Wismer • Spike! Ursinus Volleyball is Back in Action! • The Bears and the Bisonhttps://digitalcommons.ursinus.edu/grizzlynews/1647/thumbnail.jp

    SecureMEMS: Selective Deposition of Energetic Materials

    Get PDF
    There exists a pressing operational need to secure and control access to high-valued electromechanical systems, and in some cases render them inoperable. Developing a reliable method for depositing energetic materials will allow for the near-seamless integration of electromechanical systems and energetic material, and, in turn, provide the pathway for security and selective destruction that is needed. In this work, piezoelectric inkjet printing was used to selectively deposit energetic materials. Nanothermites, comprising of nanoscale aluminum and nanoscale copper oxide suspended in dimethyl-formamide (DMF), were printed onto silicon wafers, which enabled both thermal and thrust measurements of the decomposing energetic material. Various solids loadings were studied in order to optimize printing characteristics. Going forward, further studies will focus on the plausibility of inkjet printing other energetic materials for the purposes of the degradation of electromechanical systems

    Fungi: Friend or Foe? A Mycobiome Evaluation in Children with Autism and Gastrointestinal Symptoms

    Get PDF
    Gastrointestinal (GI) symptoms often affect children with autism spectrum disorders (ASD) and GI symptoms have been associated with an abnormal fecal microbiome. There is limited evidence of Candida species being more prevalent in children with ASD. We enrolled 20 children with ASD and GI symptoms (ASD + GI), 10 children with ASD but no GI symptoms (ASD - GI), and 20 from typically developing (TD) children in this pilot study. Fecal mycobiome taxa were analyzed by Internal Transcribed Spacer sequencing. GI symptoms (GI Severity Index [GSI]), behavioral symptoms (Social Responsiveness Scale -2 [SRS-2]), inflammation and fungal immunity (fecal calprotectin and serum dectin-1 [ELISA]) were evaluated. We observed no changes in the abundance of total fungal species (alpha diversity) between groups. Samples with identifiable Candida spp. were present in 4 of 19 (21%) ASD + GI, in 5 of 9 (56%) ASD - GI, and in 4 of 16 (25%) TD children (overall P = 0.18). The presence of Candida spp. did not correlate with behavioral or GI symptoms (P = 0.38, P = 0.5, respectively). Fecal calprotectin was normal in all but one child. Finally, there was no significance in serum dectin-1 levels, suggesting no increased fungal immunity in children with ASD. Our data suggest that fungi are present at normal levels in the stool of children with ASD and are not associated with gut inflammation

    Electromagnetic Counterparts of Compact Object Mergers Powered by the Radioactive Decay of R-process Nuclei

    Full text link
    The most promising astrophysical sources of kHz gravitational waves (GWs) are the inspiral and merger of binary neutron star(NS)/black hole systems. Maximizing the scientific return of a GW detection will require identifying a coincident electro-magnetic (EM) counterpart. One of the most likely sources of isotropic EM emission from compact object mergers is a supernova-like transient powered by the radioactive decay of heavy elements synthesized in ejecta from the merger. We present the first calculations of the optical transients from compact object mergers that self-consistently determine the radioactive heating by means of a nuclear reaction network; using this heating rate, we model the light curve with a one dimensional Monte Carlo radiation transfer calculation. For an ejecta mass ~1e-2 M_sun[1e-3 M_sun] the resulting light curve peaks on a timescale ~ 1 day at a V-band luminosity nu L_nu ~ 3e41[1e41] ergs/s (M_V = -15[-14]); this corresponds to an effective "f" parameter ~3e-6 in the Li-Paczynski toy model. We argue that these results are relatively insensitive to uncertainties in the relevant nuclear physics and to the precise early-time dynamics and ejecta composition. Due to the rapid evolution and low luminosity of NS merger transients, EM counterpart searches triggered by GW detections will require close collaboration between the GW and astronomical communities. NS merger transients may also be detectable following a short-duration Gamma-Ray Burst or "blindly" with present or upcoming optical transient surveys. Because the emission produced by NS merger ejecta is powered by the formation of rare r-process elements, current optical transient surveys can directly constrain the unknown origin of the heaviest elements in the Universe.Comment: 14 pages, 7 figures; accepted to MNRAS; title changed to highlight r-process connection and new figure added

    Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts

    Get PDF
    Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to Oct 20 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipeline's ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with ~50% or better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not included in v1. Accepted for publication in Astronomy & Astrophysic

    Brugia malayi Excreted/Secreted Proteins at the Host/Parasite Interface: Stage- and Gender-Specific Proteomic Profiling

    Get PDF
    Relatively little is known about the filarial proteins that interact with the human host. Although the filarial genome has recently been completed, protein profiles have been limited to only a few recombinants or purified proteins of interest. Here, we describe a large-scale proteomic analysis using microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry to identify the excretory-secretory (ES) products of the L3, L3 to L4 molting ES, adult male, adult female, and microfilarial stages of the filarial parasite Brugia malayi. The analysis of the ES products from adult male, adult female, microfilariae (Mf), L3, and molting L3 larvae identified 852 proteins. Annotation suggests that the functional and component distribution was very similar across each of the stages studied; however, the Mf contributed a higher proportion to the total number of identified proteins than the other stages. Of the 852 proteins identified in the ES, only 229 had previous confirmatory expressed sequence tags (ESTs) in the available databases. Moreover, this analysis was able to confirm the presence of 274 “hypothetical” proteins inferred from gene prediction algorithms applied to the B. malayi (Bm) genome. Not surprisingly, the majority (160/274) of these “hypothetical” proteins were predicted to be secreted by Signal IP and/or SecretomeP 2.0 analysis. Of major interest is the abundance of previously characterized immunomodulatory proteins such as ES-62 (leucyl aminopeptidase), MIF-1, SERPIN, glutathione peroxidase, and galectin in the ES of microfilariae (and Mf-containing adult females) compared to the adult males. In addition, searching the ES protein spectra against the Wolbachia database resulted in the identification of 90 Wolbachia-specific proteins, most of which were metabolic enzymes that have not been shown to be immunogenic. This proteomic analysis extends our knowledge of the ES and provides insight into the host–parasite interaction
    corecore