885 research outputs found

    Atomic data for neutron-capture elements II. Photoionization and recombination properties of low-charge krypton ions

    Full text link
    We present multi-configuration Breit-Pauli distorted-wave photoionization (PI) cross sections and radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for the first six krypton ions. These were calculated with the AUTOSTRUCTURE code, using semi-relativistic radial wavefunctions in intermediate coupling. Kr has been detected in several planetary nebulae (PNe) and H II regions, and is a useful tracer of neutron-capture nucleosynthesis. PI, RR, and DR data are required to accurately correct for unobserved Kr ions in ionized nebulae, and hence to determine elemental Kr abundances. PI cross sections have been determined for ground configuration states of Kr^0--Kr^5+ up to 100 Rydbergs. Our Kr^+ PI calculations were significantly improved through comparison with experimental measurements. RR and DR rate coefficients were determined from the direct and resonant PI cross sections at temperatures (10^1--10^7)z^2 K, where z is the charge. We account for Delta n=0 DR core excitations, and find that DR is the dominant recombination mechanism for all but Kr^+ at photoionized plasma temperatures. Internal uncertainties are estimated by comparing results computed with three different configuration-interaction expansions for each ion, and by testing the sensitivity to variations in the orbital radial scaling parameters. The PI cross sections are generally uncertain by 30-50% near the ground state thresholds. Near 10^4 K, the RR rate coefficients are typically uncertain by <10%, while those of DR exhibit uncertainties of factors of 2 to 3, due to the unknown energies of near-threshold autoionizing resonances. With the charge transfer rate coefficients presented in the third paper of this series, these data enable robust Kr abundance determinations in photoionized nebulae for the first time.Comment: 19 pages, 8 figures. Accepted for publication in Astronomy & Astrophysic

    Rare-earth elements in the atmosphere of the magnetic chemically peculiar star HD 144897. New classification of the Nd III spectrum

    Full text link
    We have obtained a UVES spectrum of a slowly rotating strongly magnetic Ap star, HD 144897, that exhibits very large overabundances of rare-earth elements. Here we present a detailed spectral analysis of this object, also taking into account effects of non-uniform vertical distribution (stratification) of chemical elements. We have determined the photospheric abundances of 40 ions. For seven elements (Mg, Si, Ca, Ti, Cr, Mn, Fe), we have obtained a stratification model that allow us to produce a satisfactory fit to the observed profiles of spectral lines of various strength. REEs abundances, that for the first time in the literature have been determined from the lines of the first and second ions, have been found typically four dex larger than solar abundances. Our analysis of REE spectral lines provide a strong support to the laboratory line classification and determination of the atomic parameters. The only remarkable exception is Nd III, for which spectral synthesis was found to be inconsistent with the observations. We have therefore performed a revision of the Nd III classification. We have confirmed the energies for 11 out of 24 odd energy levels classified previously, and we have derived the energies for additional 24 levels of Nd III, thereby increasing substantially the number of classified Nd III lines with corrected wavelengths and atomic parameters.Comment: 22 pages; accepted by A&

    Non-LTE line formation for Pr II and Pr III in A and Ap stars

    Full text link
    Non-LTE line formation for Pr II and Pr III is considered through a range of effective temperatures between 7250 K and 9500 K. A comprehensive model atom for Pr II/III is based on the measured and the predicted energy levels, in total, 6708 levels of Pr II and Pr III. We describe calculations of the Pr II energy levels and oscillator strengths for the transitions in Pr II and Pr III. The influence of departures from LTE on Pr abundance determinations is evaluated. At Teff >= 8000 K departures from LTE lead to overionization of Pr II and to systematically depleted total absorption in the line and positive abundance corrections. At the lower temperatures, different lines of Pr II may be either weakened or amplified depending on the line strength. The non-LTE effects strengthen the Pr III lines and lead to negative abundance corrections. Non-LTE corrections grow with effective temperature for the Pr II lines, and, in contrast, they decline for the Pr III lines. The Pr II/III model atom is applied to determine the Pr abundance in the atmosphere of the roAp star HD 24712 from the lines of two ionization stages. In the chemically uniform atmosphere with [Pr/H] = 3, the departures from LTE may explain only small part (0.3 dex) of the difference between the LTE abundances derived from the Pr II and Pr III lines (2 dex). We find that the lines of both ionization stages are described for the vertical distribution of the praseodymium where the Pr enriched layer with [Pr/H] > 4 exists in the outer atmosphere at log tau_5000 < -4. The departures from LTE for Pr II/III are strong in the stratified atmosphere and have the opposite sign for the Pr II and Pr III lines. Using the revised partition function of Pr II and experimental transition probabilities, we determine the solar non-LTE abundance of Pr as log (Pr/H) = -11.15\pm0.08.Comment: 17 pages, 4 tables, 11 figures, accepted for publication in A&

    New Fe II energy levels from stellar spectra

    Full text link
    The spectra of B-type and early A-type stars show numerous unidentified lines in the whole optical range, especially in the 5100 - 5400 A interval. Because Fe II transitions to high energy levels should be observed in this region, we used semiempirical predicted wavelengths and gf-values of Fe II to identify unknown lines. Semiempirical line data for Fe II computed by Kurucz are used to synthesize the spectrum of the slow-rotating, Fe-overabundant CP star HR 6000. We determined a total of 109 new 4f levels for Fe II with energies ranging from 122324 cm^-1 to 128110 cm^-1. They belong to the Fe II subconfigurations 3d^6(^3P)4f (10 levels), 3d^6(^3H)4f (36 levels), 3d^6(^3F)4f (37 levels), and 3d^6(^3G)4f (26 levels). We also found 14 even levels from 4d (3 levels), 5d (7 levels), and 6d (4 levels) configurations. The new levels have allowed us to identify more than 50% of the previously unidentified lines of HR 6000 in the wavelength region 3800-8000 A. Tables listing the new energy levels are given in the paper; tables listing the spectral lines with loggf>/=-1.5 that are transitions to the 4f energy levels are given in the Online Material. These new levels produce 18000 lines throughout the spectrum from the ultraviolet to the infrared.Comment: Paper accepted by A&A for publicatio

    Atomic data for neutron-capture elements I. Photoionization and recombination properties of low-charge selenium ions

    Full text link
    We present multi-configuration Breit-Pauli AUTOSTRUCTURE calculations of distorted-wave photoionization (PI) cross sections, and total and partial final-state resolved radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for the first six ions of the trans-iron element Se. These calculations were motivated by the recent detection of Se emission lines in a large number of planetary nebulae. Se is a potentially useful tracer of neutron-capture nucleosynthesis, but accurate determinations of its abundance in photoionized nebulae have been hindered by the lack of atomic data governing its ionization balance. Our calculations were carried out in intermediate coupling with semi-relativistic radial wavefunctions. PI and recombination data were determined for levels within the ground configuration of each ion, and experimental PI cross-section measurements were used to benchmark our results. For DR, we allowed dn=0 core excitations, which are important at photoionized plasma temperatures. DR is the dominant recombination process for each of these Se ions at temperatures representative of photoionized nebulae (~10^4 K). To estimate the uncertainties of these data, we compared results from three different configuration-interaction expansions for each ion, and tested the sensitivity of the results to the radial scaling factors in the structure calculations. We find that the internal uncertainties are typically 30-50% for the direct PI cross sections and ~10% for the computed RR rate coefficients, while those for low-temperature DR can be considerably larger (from 15-30% up to two orders of magnitude) due to the unknown energies of near-threshold autoionization resonances. The results are suitable for incorporation into photoionization codes used to numerically simulate astrophysical nebulae, and will enable robust determinations of nebular Se abundances.Comment: 17 pages, 8 figures, accepted for publication in Astronomy and Astrophysic

    High Resolution Optical Spectroscopy of the F Supergiant Proto-Planetary Nebula V887 Her=IRAS 18095+2704

    Full text link
    An abundance analysis is presented for IRAS 18095+2704 (V887 Her), a post-AGB star and proto-planetary nebula. The analysis is based on high-resolution optical spectra from the McDonald Observatory and the Special Astrophysical Observatory. Standard analysis using a classical Kurucz model atmosphere and the line analysis program MOOG provides the atmospheric parameters: Teff = 6500 K, log g = +0.5, and a microturbulent velocity Vt = 4.7 km/s and [Fe/H] = -0.9. Extraction of these parameters is based on excitation of FeI lines, ionization equilibrium between neutral and ions of Mg, Ca, Ti, Cr, and Fe, and the wings of hydrogen Paschen lines. Elemental abundances are obtained for 22 elements and upper limits for an additional four elements. These results show that the star's atmosphere has not experienced a significant number of C- and s-process enriching thermal pulses. Abundance anomalies as judged relative to the compositions of unevolved and less-evolved normal stars of a similar metallicity include Al, Y, and Zr deficiencies with respect to Fe of about 0.5 dex. Judged by composition, the star resembles a RV Tauri variable that has been mildly affected by dust-gas separation reducing the abundances of the elements of highest condensation temperature. This separation may occur in the stellar wind. There are indications that the standard 1D LTE analysis is not entirely appropriate for IRAS 18095+2704. These include a supersonic macroturbulent velocity of 23 km/s, emission in H-alpha and the failure of predicted profiles to fit observed profiles of H-beta and H-gamma.Comment: Accepted for publication in MNRA
    • …
    corecore