7 research outputs found

    Site-specific functionalization of proteins and their applications to therapeutic antibodies

    Get PDF
    Protein modifications are often required to study structure and function relationships. Instead of the random labeling of lysine residues, methods have been developed to (sequence) specific label proteins. Next to chemical modifications, tools to integrate new chemical groups for bioorthogonal reactions have been applied. Alternatively, proteins can also be selectively modified by enzymes. Herein we review the methods available for site-specific modification of proteins and their applications for therapeutic antibodies

    Modeling ischemic stroke in a triculture neurovascular unit on-a-chip

    No full text
    BACKGROUND: In ischemic stroke, the function of the cerebral vasculature is impaired. This vascular structure is formed by the so-called neurovascular unit (NVU). A better understanding of the mechanisms involved in NVU dysfunction and recovery may lead to new insights for the development of highly sought therapeutic approaches. To date, there remains an unmet need for complex human in vitro models of the NVU to study ischemic events seen in the human brain. METHODS: We here describe the development of a human NVU on-a-chip model using a platform that allows culture of 40 chips in parallel. The model comprises a perfused vessel of primary human brain endothelial cells in co-culture with induced pluripotent stem cell derived astrocytes and neurons. Ischemic stroke was mimicked using a threefold approach that combines chemical hypoxia, hypoglycemia, and halted perfusion. RESULTS: Immunofluorescent staining confirmed expression of endothelial adherens and tight junction proteins, as well as astrocytic and neuronal markers. In addition, the model expresses relevant brain endothelial transporters and shows spontaneous neuronal firing. The NVU on-a-chip model demonstrates tight barrier function, evidenced by retention of small molecule sodium fluorescein in its lumen. Exposure to the toxic compound staurosporine disrupted the endothelial barrier, causing reduced transepithelial electrical resistance and increased permeability to sodium fluorescein. Under stroke mimicking conditions, brain endothelial cells showed strongly reduced barrier function (35-fold higher apparent permeability) and 7.3-fold decreased mitochondrial potential. Furthermore, levels of adenosine triphosphate were significantly reduced on both the blood- and the brain side of the model (4.8-fold and 11.7-fold reduction, respectively). CONCLUSIONS: The NVU on-a-chip model presented here can be used for fundamental studies of NVU function in stroke and other neurological diseases and for investigation of potential restorative therapies to fight neurological disorders. Due to the platform's relatively high throughput and compatibility with automation, the model holds potential for drug compound screening

    A perfused human blood–brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport

    No full text
    Abstract Background Receptor-mediated transcytosis is one of the major routes for drug delivery of large molecules into the brain. The aim of this study was to develop a novel model of the human blood–brain barrier (BBB) in a high-throughput microfluidic device. This model can be used to assess passage of large biopharmaceuticals, such as therapeutic antibodies, across the BBB. Methods The model comprises human cell lines of brain endothelial cells, astrocytes, and pericytes in a two-lane or three-lane microfluidic platform that harbors 96 or 40 chips, respectively, in a 384-well plate format. In each chip, a perfused vessel of brain endothelial cells was grown against an extracellular matrix gel, which was patterned by means of surface tension techniques. Astrocytes and pericytes were added on the other side of the gel to complete the BBB on-a-chip model. Barrier function of the model was studied using fluorescent barrier integrity assays. To test antibody transcytosis, the lumen of the model’s endothelial vessel was perfused with an anti-transferrin receptor antibody or with a control antibody. The levels of antibody that penetrated to the basal compartment were quantified using a mesoscale discovery assay. Results The perfused BBB on-a-chip model shows presence of adherens and tight junctions and severely limits the passage of a 20 kDa FITC-dextran dye. Penetration of the antibody targeting the human transferrin receptor (MEM-189) was markedly higher than penetration of the control antibody (apparent permeability of 2.9 × 10−5 versus 1.6 × 10−5 cm/min, respectively). Conclusions We demonstrate successful integration of a human BBB microfluidic model in a high-throughput plate-based format that can be used for drug screening purposes. This in vitro model shows sufficient barrier function to study the passage of large molecules and is sensitive to differences in antibody penetration, which could support discovery and engineering of BBB-shuttle technologies

    LifeTime and improving European healthcare through cell-based interceptive medicine

    No full text
    AUTEURS : LifeTime Community Working GroupsInternational audienceHere we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. The timely detection and interception of disease embedded in an ethical and patient-centred vision will be achieved through interactions across academia, hospitals, patient associations, health data management systems and industry. The application of this strategy to key medical challenges in cancer, neurological and neuropsychiatric disorders, and infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade

    Enhancing photodynamic therapy of refractory solid cancers: Combining second-generation photosensitizers with multi-targeted liposomal delivery

    Get PDF
    Contemporary photodynamic therapy (PDT) for the last-line treatment of refractory cancers such as nasopharyngeal carcinomas, superficial recurrent urothelial carcinomas, and non-resectable extrahepatic cholangiocarcinomas yields poor clinical outcomes and may be associated with adverse events. This is mainly attributable to three factors: (1) the currently employed photosensitizers exhibit suboptimal spectral properties, (2) the route of administration is associated with unfavorable photosensitizer pharmacokinetics, and (3) the upregulation of survival pathways in tumor cells may impede cell death after PDT. Consequently, there is a strong medical need to improve PDT of these recalcitrant cancers. An increase in PDT efficacy and reduction in clinical side-effects may be achieved by encapsulating second-generation photosensitizers into liposomes that selectively target to pharmacologically important tumor locations, namely tumor cells, tumor endothelium, and tumor interstitial spaces. In addition to addressing the drawbacks of clinically approved photosensitizers, this review addresses the most relevant pharmacological aspects that dictate clinical outcome, including photosensitizer biodistribution and intracellular localization in relation to PDT efficacy, the mechanisms of PDT-induced cell death, and PDT-induced antitumor immune responses. Also, a rationale is provided for the use of second-generation photosensitizers such as diamagnetic phthalocyanines (e.g., zinc or aluminum phthalocyanine), which exhibit superior photophysical and photochemical properties, in combination with a multi-targeted liposomal photosensitizer delivery system. The rationale for this PDT platform is corroborated by preliminary experimental data and proof-of-concept studies. Finally, a summary of the different nanoparticulate photosensitizer delivery systems is provided followed by a section on phototriggered release mechanisms in the context of liposomal photosensitizer delivery systems

    LifeTime and improving European healthcare through cell-based interceptive medicine

    Get PDF
    LifeTime aims to track, understand and target human cells during the onset and progression of complex diseases and their response to therapy at single-cell resolution. This mission will be implemented through the development and integration of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during progression from health to disease. Analysis of such large molecular and clinical datasets will discover molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. Timely detection and interception of disease embedded in an ethical and patient-centered vision will be achieved through interactions across academia, hospitals, patient-associations, health data management systems and industry. Applying this strategy to key medical challenges in cancer, neurological, infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.We would like to acknowledge all participants that have attended and contributed to LifeTime meetings and workshops through many exciting presentations and discussions. We thank Johannes Richers for artwork. LifeTime has received funding from the European Unionʼs Horizon 2020 research and innovation framework programme under Grant agreement 820431

    Enhancing photodynamic therapy of refractory solid cancers: Combining second-generation photosensitizers with multi-targeted liposomal delivery

    No full text
    corecore