8,238 research outputs found

    Numerical solutions of a boundary value problem on the sphere using radial basis functions

    Full text link
    Boundary value problems on the unit sphere arise naturally in geophysics and oceanography when scientists model a physical quantity on large scales. Robust numerical methods play an important role in solving these problems. In this article, we construct numerical solutions to a boundary value problem defined on a spherical sub-domain (with a sufficiently smooth boundary) using radial basis functions (RBF). The error analysis between the exact solution and the approximation is provided. Numerical experiments are presented to confirm theoretical estimates

    Computer code for the prediction of nozzle admittance

    Get PDF
    A procedure which can accurately characterize injector designs for large thrust (0.5 to 1.5 million pounds), high pressure (500 to 3000 psia) LOX/hydrocarbon engines is currently under development. In this procedure, a rectangular cross-sectional combustion chamber is to be used to simulate the lower traverse frequency modes of the large scale chamber. The chamber will be sized so that the first width mode of the rectangular chamber corresponds to the first tangential mode of the full-scale chamber. Test data to be obtained from the rectangular chamber will be used to assess the full scale engine stability. This requires the development of combustion stability models for rectangular chambers. As part of the combustion stability model development, a computer code, NOAD based on existing theory was developed to calculate the nozzle admittances for both rectangular and axisymmetric nozzles. This code is detailed

    A practical degradation based method to predict long-term moisture incursion and colour change in high power LEDs

    Get PDF
    The effect of relative humidity on LEDs and how the moisture incursion is associated to the color shift is studied. This paper proposes a different approach to describe the lumen degradation of LEDs due to the long-term effects of humidity. Using the lumen degradation data of different types of LEDs under varying conditions of relative humidity, a humidity based degradation model (HBDM) is developed. A practical estimation method from the degradation behaviour is proposed to quantitatively gauge the effect of moisture incursion by means of a humidity index. This index demonstrates a high correlation with the color shift indicated by the LED's yellow to blue output intensity ratio. Physical analyses of the LEDs provide a qualitative validation of the model, which provides good accuracy with longer periods of moisture exposure. The results demonstrate that the HBDM is an effective indicator to predict the extent of the long-term impact of humidity and associated relative color shift
    corecore