718 research outputs found
Detecting Planets Around Very Low Mass Stars with the Radial Velocity Method
The detection of planets around very low-mass stars with the radial velocity
method is hampered by the fact that these stars are very faint at optical
wavelengths where the most high-precision spectrometers operate. We investigate
the precision that can be achieved in radial velocity measurements of low mass
stars in the near infrared (nIR) Y-, J-, and H-bands, and we compare it to the
precision achievable in the optical. For early-M stars, radial velocity
measurements in the nIR offer no or only marginal advantage in comparison to
optical measurements. Although they emit more flux in the nIR, the richness of
spectral features in the optical outweighs the flux difference. We find that
nIR measurement can be as precise than optical measurements in stars of
spectral type ~M4, and from there the nIR gains in precision towards cooler
objects. We studied potential calibration strategies in the nIR finding that a
stable spectrograph with a ThAr calibration can offer enough wavelength
stability for m/s precision. Furthermore, we simulate the wavelength-dependent
influence of activity (cool spots) on radial velocity measurements from optical
to nIR wavelengths. Our spot simulations reveal that the radial velocity jitter
does not decrease as dramatically towards longer wavelengths as often thought.
The jitter strongly depends on the details of the spots, i.e., on spot
temperature and the spectral appearance of the spot. Forthcoming nIR
spectrographs will allow the search for planets with a particular advantage in
mid- and late-M stars. Activity will remain an issue, but simultaneous
observations at optical and nIR wavelengths can provide strong constraints on
spot properties in active stars.Comment: accepted by ApJ, v2 accepted revision with new precision
calculations, abstract abride
Capacitive Coupling Voltage Contrast
Capacitive coupling voltage contrast (CCVC) allows electron-beam testing of passivated integrated circuits (IC) without radiation damage or prior, time-consuming specimen preparation. This effect occurs when low primary electron energies are used and the electron yield of the passivation layer is greater than 1. Signal changes in the relevant interconnections are transferred to the passivation surface via capacitive coupling, but they vanish there within the storage time due to electron irradiation. A physical model explains the dependence of CCVC on three parameters: electron irradiation, the passivation material and the signals within the IC. Computer simulations based on this model describe the experimentally-obtained dependencies of the storage time with precision and al low predictions to be made for using CCVC in electron beam testing. The requisite modifications to the electron beam testing system are described and the possible uses of CCVC for testing passivated devices within IC are demonstrated on the basis of examples
On detectability of Zeeman broadening in optical spectra of F- and G-dwarfs
We investigate the detectability of Zeeman broadening in optical Stokes I
spectra of slowly rotating sun-like stars. To this end, we apply the LTE
spectral line inversion package SPINOR to very-high quality CES data and
explore how fit quality depends on the average magnetic field, Bf .
One-component (OC) and two-component (TC) models are adopted. In OC models, the
entire surface is assumed to be magnetic. Under this assumption, we determine
formal 3{\sigma} upper limits on the average magnetic field of 200 G for the
Sun, and 150 G for 61 Vir (G6V). Evidence for an average magnetic field of ~
500 G is found for 59 Vir (G0V), and of ~ 1000 G for HD 68456 (F6V). A
distinction between magnetic and non-magnetic regions is made in TC models,
while assuming a homogeneous distribution of both components. In our TC
inversions of 59 Vir, we investigate three cases: both components have equal
temperatures; warm magnetic regions; cool magnetic regions. Our TC model with
equal temperatures does not yield significant improvement over OC inversions
for 59 Vir. The resulting Bf values are consistent for both. Fit quality is
significantly improved, however, by using two components of different
temperatures. The inversions for 59 Vir that assume different temperatures for
the two components yield results consistent with 0 - 450 G at the formal
3{\sigma} confidence level. We thus find a model dependence of our analysis and
demonstrate that the influence of an additional temperature component can
dominate over the Zeeman broadening signature, at least in optical data.
Previous comparable analyses that neglected effects due to multiple temperature
components may be prone to the same ambiguities.Comment: 18 pages, 11 figures, accepted for publication in Astronomy &
Astrophysic
Multi-wavelength observations of Proxima Centauri
We report simultaneous observations of the nearby flare star Proxima Centauri
with VLT/UVES and XMM-Newton over three nights in March 2009. Our optical and
X-ray observations cover the star's quiescent state, as well as its flaring
activity and allow us to probe the stellar atmospheric conditions from the
photosphere into the chromosphere, and then the corona during its different
activity stages. Using the X-ray data, we investigate variations in coronal
densities and abundances and infer loop properties for an intermediate-sized
flare. The optical data are used to investigate the magnetic field and its
possible variability, to construct an emission line list for the chromosphere,
and use certain emission lines to construct physical models of Proxima
Centauri's chromosphere.
We report the discovery of a weak optical forbidden Fe xiii line at 3388 AA
during the more active states of Proxima Centauri. For the intermediate flare,
we find two secondary flare events that may originate in neighbouring loops,
and discuss the line asymmetries observed during this flare in H i, He i, and
Ca ii lines. The high time-resolution in the H alpha line highlights strong
temporal variations in the observed line asymmetries, which re-appear during a
secondary flare event. We also present theoretical modelling with the stellar
atmosphere code PHOENIX to construct flaring chromospheric models.Comment: 19 pages, 22 figures, accepted by A&
Measuring Magnetic Fields in Ultracool Stars and Brown Dwarfs
We present a new method for direct measurement of magnetic fields on
ultracool stars and brown dwarfs. It takes advantage of the Wing-Ford band of
FeH, which are seen throughout the M and L spectral types. These molecular
features are not as blended as other optical molecular bands, are reasonably
strong through most of the spectral range, and exhibit a response to magnetic
fields which is easier to detect than other magnetic diagnostics, including the
usual optical and near-infrared atomic spectral lines that have heretofore been
employed. The FeH bands show a systematic growth as the star gets cooler. We do
not find any contamination by CrH in the relevant spectral region. We are able
to model cool and rapidly-rotating spectra from warmer, slowly-rotating spectra
utilizing an interpolation scheme based on optical depth scaling. We show that
the FeH features can distinguish between negligible, moderate, and high
magnetic fluxes on low-mass dwarfs, with a current accuracy of about one
kilogauss. Two different approaches to extracting the information from the
spectra are developed and compared. Which one is superior depends on a number
of factors. We demostrate the validity of our new procedures by comparing the
spectra of three M stars whose magnetic fluxes are already known from atomic
line analysis. The low and high field stars are used to produce interpolated
moderate-strength spectra which closely resemble the moderate-field star. The
assumption of linear behavior for the magnetic effects appears to be
reasonable, but until the molecular constants are better understood the method
is subject to that assumption, and rather approximate. Nonetheless, it opens a
new regime of very low-mass objects to direct confirmation and testing of their
magnetic dynamos.Comment: 36 preprint pages, accepted for publication in Ap
Persistent Magnetic Wreaths in a Rapidly Rotating Sun
When our Sun was young it rotated much more rapidly than now. Observations of
young, rapidly rotating stars indicate that many possess substantial magnetic
activity and strong axisymmetric magnetic fields. We conduct simulations of
dynamo action in rapidly rotating suns with the 3-D MHD anelastic spherical
harmonic (ASH) code to explore the complex coupling between rotation,
convection and magnetism. Here we study dynamo action realized in the bulk of
the convection zone for a system rotating at three times the current solar
rotation rate. We find that substantial organized global-scale magnetic fields
are achieved by dynamo action in this system. Striking wreaths of magnetism are
built in the midst of the convection zone, coexisting with the turbulent
convection. This is a surprise, for it has been widely believed that such
magnetic structures should be disrupted by magnetic buoyancy or turbulent
pumping. Thus, many solar dynamo theories have suggested that a tachocline of
penetration and shear at the base of the convection zone is a crucial
ingredient for organized dynamo action, whereas these simulations do not
include such tachoclines. We examine how these persistent magnetic wreaths are
maintained by dynamo processes and explore whether a classical mean-field
-effect explains the regeneration of poloidal field.Comment: 17 pages, 9 figures, 1 appendix, emulateapj format; published version
of sections 3-4, 7 and appendix from arXiv:0906.240
SDSS J125637-022452: a high proper motion L subdwarf
We report the discovery of a high proper motion L subdwarf (
=0.617arcsec/yr) in the Sloan Digital Sky Survey spectral database. The optical
spectrum from the star SDSS J125637-022452 has mixed spectral features of both
late-M spectral subtype (strong TiO and CaH at 7000A) and mid-L spectral
subtype (strong wings of KI at 7700A, CrH and FeH), which is interpreted as the
signature of a very low-mass, metal-poor star (ultra-cool subdwarf) of spectral
type sdL. The near infrared (NIR) (J-Ks) colors from 2MASS shows the object to
be significantly bluer compared to normal L dwarfs, which is probably due a
strong collision induced absorption (CIA) due to H2 molecule. This is
consistent with the idea that CIA from H2 is more pronounced at low
metallicities. Proper motion and radial velocity measurements also indicate
that the star is kinematically "hot" and probably associated with the Galactic
halo population.Comment: 13 pages, 2 figures. Accepted for ApJ
Transient Cenozoic tectonic stages in the southern margin of the Caribbean plate : U-Th/He thermochronological constraints from Eocene plutonic rocks in the Santa Marta massif and Serranía de Jarara, northern Colombia
We use U-Th/(He) zircon and apatite thermochronology and Al in hornblende geobarometry from Eocene granitoids of the Sierra Nevada de Santa Marta and Guajira uplifted massifs in northern Colombia to elucidate the exhumation history of the northern South America continental margin and its bearing to Cenozoic Caribbean- South American plate interactions. Aluminium in hornblende geobarometry from the Eocene Santa Marta batholith yields pressures between 4.9±0.6kbar and 6.4±0.6kbar, which indicate that at least, 14.7-19.2km of unroofing took place since 56-50Ma in the northwestern Sierra Nevada de Santa Marta. In the Guajira Peninsula, calculated pressures for the Eocene Parashi stock are 2.3±0.6kbar and 3±0.6kbar. Stratigraphic considerations pertaining to Oligocene conglomerates from the Guajira area suggest that 6.9-9km of crust was lost between 50Ma and ca. 26Ma. U-Th/He zircon and apatite thermochronology from granitoids in the Sierra Nevada de Santa Marta shows the existence of major exhumation events in the Late Eocene (ca. 45-40Ma), Late Oligocene (ca. 25Ma) and Miocene (ca. 15Ma). The Guajira region records the Late Eocene to Early Oligocene (35-25Ma) event, but it lacks evidence for the Miocene exhumation phase. These differences reflect isolation of the Guajira region from the Sierra Nevada de Santa Marta and the Andean chain due to extensive block rotation and transtensional tectonics that affected the region during post-Eocene times. The post-Eocene events correlate in time with an increased convergence rate and the frontal approach of North and South America. It is suggested that the two major tectonic mechanisms that govern exhumation in these Caribbean massifs are: 1) subduction of the Caribbean plate, and 2) post Eocene changes in plate convergence obliquity and rates that caused the South American continental margin blocks to override the Caribbean plate. Temporal correlation with other Caribbean and Northern Andean events allows to resolve the regional Cenozoic plate tectonic reorganizations experienced by the South American, Caribbean and Pacific plates at a regional scale
The Rigidly Rotating Magnetosphere of Sigma Ori E
We attempt to characterize the observed variability of the magnetic
helium-strong star sigma Ori E in terms of a recently developed rigidly
rotating magnetosphere model. This model predicts the accumulation of
circumstellar plasma in two co-rotating clouds, situated in magnetohydrostatic
equilibrium at the intersection between magnetic and rotational equators. We
find that the model can reproduce well the periodic modulations observed in the
star's light curve, H alpha emission-line profile, and longitudinal field
strength, confirming that it furnishes an essentially correct, quantitative
description of the star's magnetically controlled circumstellar environment.Comment: 4 pages, 3 figures, accepted by Ap
- …