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PERSISTENT MAGNETIC WREATHS IN A RAPIDLY ROTATING SUN
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ABSTRACT

When our Sun was young it rotated much more rapidly than now. Observations of young, rapidly rotating
stars indicate that many possess substantial magnetic activity and strong axisymmetric magnetic fields. We
conduct simulations of dynamo action in rapidly rotating suns with the three-dimensional magnetohydrodynamic
anelastic spherical harmonic (ASH) code to explore the complex coupling between rotation, convection, and
magnetism. Here, we study dynamo action realized in the bulk of the convection zone for a system rotating
at 3 times the current solar rotation rate. We find that substantial organized global-scale magnetic fields
are achieved by dynamo action in this system. Striking wreaths of magnetism are built in the midst of the
convection zone, coexisting with the turbulent convection. This is a surprise, for it has been widely believed
that such magnetic structures should be disrupted by magnetic buoyancy or turbulent pumping. Thus, many
solar dynamo theories have suggested that a tachocline of penetration and shear at the base of the convection
zone is a crucial ingredient for organized dynamo action, whereas these simulations do not include such
tachoclines. We examine how these persistent magnetic wreaths are maintained by dynamo processes and explore
whether a classical mean-field α-effect explains the regeneration of poloidal field. We find that the global-
scale toroidal magnetic fields are maintained by an Ω-effect arising from the differential rotation, while the
global-scale poloidal fields arise from turbulent correlations between the convective flows and magnetic fields.
These correlations are not well represented by an α-effect that is based on the kinetic and magnetic helicities.
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1. STELLAR MAGNETISM AND ROTATION

Most stars are born rotating quite rapidly. They can arrive
on the main sequence with rotational velocities as high as
200 km s−1 (Bouvier et al. 1997). Stars with convection zones
at their surfaces, like the Sun, slowly spin-down as they shed
angular momentum through their magnetized stellar winds (e.g.,
Weber & Davis 1967; Skumanich 1972; MacGregor & Brenner
1991). The time needed for significant spin-down appears to be
a strong function of stellar mass (e.g., Barnes 2003; West et al.
2004): solar-mass stars slow less rapidly than somewhat less
massive G- and K-type stars, but still appear to lose much of
their angular momentum by the time they are as old as the Sun.
Present day observations of the solar wind likewise indicate that
the current angular momentum flux from the Sun is a few times
1030 dyn cm (e.g., Pizzo et al. 1983), suggesting a timescale for
substantial angular momentum loss of a few billion years. Thus,
the Sun likely rotated significantly more rapidly in its youth than
it does today.

1.1. Rotation–Activity Relations

Rotation appears to be inextricably linked to stellar magnetic
activity. Observations indicate that in stars with extensive
convective envelopes, chromospheric and coronal activity—
which partly trace magnetic heating of stellar atmospheres—
first rise with increasing rotation rate, then eventually level off
at a constant value for rotation rates above a mass-dependent
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threshold velocity (e.g., Noyes et al. 1984; Patten & Simon
1996; Delfosse et al. 1998; Pizzolato et al. 2003). Activity
may even decline somewhat in the most rapid rotators (e.g.,
James et al. 2000). Similar correspondence is observed between
rotation rate and estimates of the unsigned surface magnetic flux
(Saar 1996, 2001; Reiners et al. 2009). This “rotation–activity”
relationship is tightened when stellar rotation is given in terms of
the Rossby number Ro ∼ P/τc, with P the rotation period and
τc an estimate of the convective overturning time (e.g., Noyes
et al. 1984). Expressed in this fashion, a common rotation–
activity correlation appears to span spectral types ranging from
late F to late M (e.g., Mohanty & Basri 2003; Pizzolato et al.
2003; Reiners & Basri 2007). Magnetic fields can likewise feed
back upon stellar rotation by modifying the rate at which angular
momentum is lost through a stellar wind (e.g., Weber & Davis
1967; Matt & Pudritz 2008). Analyses of stellar spin-down as a
function of age and mass have thus provided further constraints
on stellar magnetism and its connections to rotation. There are
also indications that the period of the activity cycle itself may
depend on the stellar rotation rate (e.g., Saar & Brandenburg
1999). Recent observations of solar-type stars may indicate
that even the topology of the global-scale fields changes with
rotation rate, with the rapid rotators having substantial global-
scale toroidal magnetic fields at their surfaces (Petit et al. 2008).
The overall picture that emerges from these observations is that
rapid rotation, as realized in the younger Sun and in a host of
other stars, can aid in the generation of strong magnetic fields
and that young stars tend to be rapidly rotating and magnetically
active, whereas older ones are slower and less active (e.g.,
Barnes 2003; West et al. 2004, 2008).
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A full theoretical understanding of the rotation–activity rela-
tionship, and likewise of stellar spin-down, has remained elu-
sive. Some aspects of these phenomena probably depend upon
the details of magnetic flux emergence, chromospheric and coro-
nal heating, and mass loss mechanisms—but the basic existence
of a rotation–activity relationship is widely thought to reflect
some underlying rotational dependence of the dynamo process
itself (e.g., Knobloch et al. 1981; Noyes et al. 1984; Baliunas
et al. 1996).

1.2. Elements of Global Dynamo Action

In stars like the Sun, the global-scale dynamo is generally
thought to be seated in the tachocline, an interface of shear
between the differentially rotating convection zone and the
radiative interior which is in solid body rotation (e.g., Parker
1993; Charbonneau & MacGregor 1997; Ossendrijver 2003).
Helioseismology revealed the internal rotation profile of the Sun
and the presence of this important shear layer (e.g., Thompson
et al. 2003). The stably stratified tachocline may provide a
region for storing and amplifying coherent tubes of magnetic
field which may eventually rise to the surface of the Sun as
sunspots. Others have suggested that the latitudinal and radial
gradients of angular velocity in the bulk of the convection zone
may be sufficient for global dynamo action (e.g., Dikpati &
Charbonneau 1999; Brandenburg 2005; Guerrero & de Gouveia
Dal Pino 2007). However, it has generally been believed that
magnetic buoyancy instabilities may prevent fields from being
strongly amplified within the bulk of the convection zone itself
(Parker 1975). In the now prevalent “interface dynamo” model,
solar magnetic fields are partly generated in the convection
zone by helical convection, then transported downward into
the tachocline where they are organized and amplified by the
shear. Ultimately, the fields may become unstable and rise to the
surface.

Although the rotational dependence of this process is not well
understood, some guidance may come from mean-field dynamo
theory. In such theories, the solar dynamo is often referred to
as an “α − Ω” dynamo, with the α-effect characterizing the
twisting of fields by helical convection (e.g., Moffatt 1978;
Steenbeck et al. 1966) and the Ω-effect representing the shearing
of poloidal fields by differential rotation to form toroidal fields.
Both of these effects are, in mean-field theory, sensitive to
rotation: the α-effect because it is proportional to the kinetic
helicity of the convective flows, which sense the overall rotation
rate, and the Ω-effect because more rapidly rotating stars are
generally expected to have stronger differential rotation. But
the detailed nature of these effects in the solar dynamo and
the appropriate scaling with rotation has been very difficult to
elucidate.

Simulations of the global-scale solar dynamo have generally
affirmed the view that the tachocline may play a central role
in building the globally ordered magnetism in the Sun. Recent
three-dimensional (3D) simulations of solar convection without
a tachocline at the base of the convection zone achieved dy-
namo action and produced magnetic fields which were strongly
dominated by fluctuating components with little global-scale
order (Brun et al. 2004). When a tachocline of penetration and
shear was included, remarkable global-scale magnetic struc-
tures were realized in the tachocline region, while the convec-
tion zone remained dominated by fluctuating fields (Browning
et al. 2006). These simulations are making good progress to-
ward clarifying the elements at work in the operation of the solar
global-scale dynamo, but for other stars many questions remain.

In particular, observations of large-scale magnetism in fully con-
vective M-stars (Donati et al. 2006), along with the persistence
of a rotation–activity correlation in such low-mass stars, hint
that perhaps tachoclines may not be essential for the generation
of global-scale magnetic fields. This view is partly borne out
by simulations of M-dwarfs under strong rotational constraints
(Browning 2008), where strong longitudinal mean fields were
realized despite the lack of either substantial differential rota-
tion or a stable interior and thus no classical tachocline. Major
puzzles remain in the quest to understand stellar magnetism and
its scaling with stellar rotation.

1.3. Convection and Dynamos in Rapidly Rotating Systems

We began our study of rapidly rotating suns by carrying out
a suite of 3D hydrodynamic simulations in full spherical shells
that explored the coupling of rotation and convection in these
younger solar-type stars (Brown et al. 2008). Those simulations
studied the influence of rotation on the patterns of convection
and the nature of global-scale flows in such stars. The shearing
flows of differential rotation generally grow in amplitude with
more rapid rotation, possessing rapid equators and slower poles,
while the meridional circulations weaken and break up into
multiple cells in radius and latitude. More rapid rotation can also
substantially modify the patterns of convection in a surprising
fashion. With more rapid rotation, localized states begin to
appear in which the convection at low latitudes is modulated
in its strength with longitude. At the highest rotation rates, the
convection can become confined to active nests which propagate
at distinct rates and persist for long epochs.

Motivated by these discoveries, we turn here to explorations
of the possible dynamo action achieved in a solar-type star
rotating at three times the current solar rate. These 3D magne-
tohydrodynamic (MHD) simulations span the convection zone
alone, as the nature of tachoclines in more rapidly rotating suns
is at present unclear. We find that a variety of dynamos can be
excited, including steady and oscillating states, and that dynamo
action is substantially easier to achieve at these faster rotation
rates than in the solar simulations. Magnetism leads to strong
feedbacks on the flows, particularly modifying the differential
rotation and its scaling with the overall rotation rate Ω0. The
magnetic fields which form in these dynamos have prominent
global-scale organization within the convection zone, in con-
trast to previous solar dynamo simulations (Brun et al. 2004;
Browning et al. 2006).

Quite strikingly, we find that coherent global magnetic struc-
tures arise naturally in the midst of the turbulent convection
zone. These wreath-like structures are regions of strong longi-
tudinal field Bφ organized loosely into tubes, with fields wan-
dering in and out of the surrounding convection. These wreaths
of magnetism differ substantially from the idealized flux tubes
supposed in many dynamo theories, though they may be related
to coherent structures achieved in local simulations of dynamo
action in shear flows (Cline et al. 2003; Vasil & Brummell 2008,
2009).

Here, we explore the nature of persistent magnetic wreaths
realized in a global simulation rotating at three times the solar
rotation rate, and discuss how they are maintained amidst
turbulent convection. In many of our other rapidly rotating
suns, the dynamos become time dependent and undergo semi-
regular changes of global-scale polarity. Those dynamos will
be explored in an upcoming paper. We additionally find that
magnetic wreaths survive in the presence of a model tachocline,
and those simulations will be reported on separately.
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We outline in Section 2 the 3D MHD anelastic spherical shell
model and the parameter space explored by these simulations.
We then examine in Sections 3 and 4 the structure of magnetic
fields found in our rapidly rotating dynamo at three times the
solar rate, which builds persistent global-scale ordered fields
in the form of wreaths in the midst of its convection zone.
In Section 5, we examine how such global-scale fields are
created and maintained by dynamo processes. In Section 6, we
explore whether a classical mean-field α-effect reproduces our
observed production of poloidal field. We reflect on our findings
in Section 7.

2. GLOBAL MODELING APPROACH

To study the coupling between rotation, magnetism, and
the large-scale flows achieved in stellar convection zones, we
must employ a global model which simultaneously captures
the spherical shell geometry and admits the possibility of zonal
jets and large-eddy vortices, and of convective plumes that may
span the depth of the convection zone. The solar convection
zone is intensely turbulent and microscopic values of viscosity
and magnetic and thermal diffusivities in the Sun are estimated
to be very small. Numerical simulations cannot hope to resolve
all scales of motion present in real stellar convection and must
instead strike a compromise between resolving dynamics on
small scales and capturing the connectivity and geometry of the
global scales. Here, we focus on the latter by studying a full
spherical shell of convection.

2.1. Anelastic MHD Formulation

Our tool for exploring MHD stellar convection is the anelastic
spherical harmonic (ASH) code, which is described in detail in
Clune et al. (1999). The implementation of magnetism is dis-
cussed in Brun et al. (2004). ASH solves the 3D MHD anelas-
tic equations of motion in a rotating spherical shell using the
pseudo-spectral method and runs efficiently on massively paral-
lel architectures. We use the anelastic approximation to capture
the effects of density stratification without having to resolve
sound waves which have short periods (about 5 minutes) rela-
tive to the dynamical timescales of the global-scale convection
(weeks to months) or possible cycles of stellar activity (years
to decades). This criteria effectively filters out the fast magne-
toacoustic modes while retaining the slow modes and Alfvén
waves. Under the anelastic approximation, the thermodynamic
fluctuating variables are linearized about their spherically sym-
metric and evolving mean state, with radially varying density ρ̄,
pressure P̄ , temperature T̄ , and specific entropy S̄. The fluctua-
tions about this mean state are denoted as ρ, P, T, and S. In the
reference frame of the star, rotating at average rotation rate Ω0,
the resulting MHD equations are

∇ · (ρ̄v) = 0 , (1)

∇ · B = 0 , (2)

ρ̄

[
∂v

∂t
+ (v · ∇)v + 2Ω0 × v

]
= −∇(P̄ + P )

+ (ρ̄ + ρ)g +
1

4π
(∇ × B) × B − ∇ · D, (3)

∂ B
∂t

= ∇ × (v × B) − ∇ × (η∇ × B), (4)

ρ̄T̄

[
∂S

∂t
+ v · ∇(S̄ + S)

]

= ∇ · [κr ρ̄cp∇(T̄ + T ) + κ0ρ̄T̄ ∇S̄ + κρ̄T̄ ∇S]

+
4πη

c2
j2 + 2ρ̄ν

[
eij eij − 1

3
(∇ · v)2

]
, (5)

where v = (vr, vθ , vφ) is the local velocity in the stellar
reference frame, B = (Br, Bθ , Bφ) is the magnetic field, j
is the vector current density, g is the gravitational acceleration,
cp is the specific heat at constant pressure, κr is the radiative
diffusivity, and D is the viscous stress tensor, given by

Dij = −2ρ̄ν

[
eij − 1

3
(∇ · v)δij

]
, (6)

where eij is the strain rate tensor. Here, ν, κ , and η are
the diffusivities for vorticity, entropy, and magnetic field. We
assume an ideal gas law

P̄ = Rρ̄T̄ , (7)

where R is the gas constant, and close this set of equations using
the linearized relations for the thermodynamic fluctuations of

ρ

ρ̄
= P

P̄
− T

T̄
= P

γ P̄
− S

cp

. (8)

The mean state thermodynamic variables that vary with radius
are evolved with the fluctuations, thus allowing the convection
to modify the entropy gradients which drive it.

The mass flux and the magnetic field are represented with a
toroidal–poloidal decomposition as

ρ̄v = ∇ × ∇ × (Wr̂) + ∇ × (Zr̂), (9)

B = ∇ × ∇ × (βr̂) + ∇ × (ζ r̂), (10)

with stream functions W and Z and magnetic potentials β
and ζ . This approach ensures that both quantities remain
divergence-free to machine precision throughout the simulation.
The velocity, magnetic and thermodynamic variables are all
expanded in spherical harmonics for their horizontal structure
and in Chebyshev polynomials for their radial structure. The
solution is time evolved with a second-order Adams–Bashforth/
Crank–Nicolson technique.

ASH is a large-eddy simulation (LES) code, with subgrid-
scale (SGS) treatments for scales of motion which fall below
the spatial resolution in our simulations. We treat these scales
with effective eddy diffusivities, ν, κ , and η, which represent
the transport of momentum, entropy, and magnetic field by
unresolved motions in the simulations. These simulations are
based on the hydrodynamic studies reported in Brown et al.
(2008), and as there ν, κ , and η are taken for simplicity
as functions of radius alone and proportional to ρ̄−1/2. This
adopted SGS variation, as in Brun et al. (2004) and Browning
et al. (2006), yields lower diffusivities near the bottom of the
layer and thus higher Reynolds numbers. Acting on the mean
entropy gradient is the eddy thermal diffusion κ0 which is treated
separately and occupies a narrow region in the upper convection
zone. Its purpose is to transport entropy through the outer surface
where radial convective motions vanish.

The boundary conditions imposed at the top and bottom of
the convective unstable shell are as follows:
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Table 1
Parameters for Primary Simulations

Case Nr, Nθ , Nφ Ra Ta Re Re′ Rm Rm′ Ro Roc ν η Ω0/Ω�
D3 96 × 256 × 512 3.22 × 105 1.22 × 107 173 105 86 52 0.378 0.311 1.32 2.64 3
H3 96 × 256 × 512 4.10 × 105 1.22 × 107 335 105 · · · · · · 0.427 0.353 1.32 · · · 3

Notes. Dynamo simulation at three times the solar rotation rate is case D3, and the hydrodynamic (non-magnetic) companion is H3. Both
simulations have inner radius rbot = 5.0 × 1010 cm and outer radius of rtop = 6.72 × 1010 cm, with L = (rtop − rbot) = 1.72 × 1010 cm
the thickness of the spherical shell. Evaluated at mid-depth are the Rayleigh number Ra = (−∂ρ/∂S)(dS̄/dr)gL4/ρνκ , the Taylor number
Ta = 4Ω2

0L
4/ν2, the rms Reynolds number Re = vrmsL/ν and fluctuating Reynolds number Re′ = v′

rmsL/ν, the magnetic Reynolds number
Rm = vrmsL/η and fluctuating magnetic Reynolds number Rm′ = v′

rmsL/η, the Rossby number Ro = ω/2Ω0, and the convective Rossby
number Roc = (Ra/Ta Pr)1/2. Here, the fluctuating velocity v′ has the axisymmetric component removed: v′ = v − 〈v〉, with angle brackets
denoting an average in longitude. For both simulations, the Prandtl number Pr = ν/κ is 0.25 and in the dynamo simulation the magnetic Prandtl
number Pm = ν/η is 0.5. The viscous and magnetic diffusivities, ν and η, are quoted at mid-depth (in units of 1012 cm2 s−1). The rotation
rate Ω0 of each reference frame is in multiples of the solar rate Ω� = 2.6 × 10−6 rad s−1 or 414 nHz. The viscous timescale at mid-depth
τν = L2/ν is about 2600 days for case D3 and the resistive timescale is about 1300 days, while the rotation period is 9.3 days.

1. impenetrable top and bottom: vr = 0,
2. stress-free top and bottom:

(∂/∂r)(vθ/r) = (∂/∂r)(vφ/r) = 0,

3. constant entropy gradient at top and bottom:

∂(S + S̄)/∂r = const, (11)

4. match to external potential field at top:

B = ∇Φ and ∇2Φ = 0|r=rtop ,

5. perfect conductor at bottom:

Br = (∂/∂r)(rBθ ) = (∂/∂r)(rBφ) = 0.

2.2. Posing the Dynamo Problem

Our simulations are a simplified picture of the vastly turbulent
stellar convection zones present in G-type stars. We take
solar values for the input entropy flux, mass, and radius,
and explore simulations of a star rotating at three times the
current solar rotation rate. We focus here on the bulk of the
convection zone, with our computational domain extending
from 0.72 R� to 0.97 R�, thus spanning 172 Mm in radius.
The total density contrast across the shell is about 25. The
reference or mean state of our thermodynamic variables is
derived from a one-dimensional solar structure model (Brun
et al. 2002) and is continuously updated with the spherically
symmetric components of the thermodynamic fluctuations as
the simulations proceed. The reference state in all of these
simulations is similar to that shown in Brown et al. (2008). We
avoid regions near the stellar surface where hydrogen ionization
and radiative losses drive intense convection (like granulation)
on very small scales that we cannot resolve, and thus position the
upper boundary slightly below this region. Our lower boundary
is positioned near the base of the convection zone, thus omitting
the stably stratified radiative interior and the shear layer at
the base of the convection zone known as the tachocline. The
fundamental characteristics of our simulations and parameter
definitions are summarized in Table 1.

The dynamo simulation was initiated from a mature hydro-
dynamic progenitor which had been evolved for more than
5000 days and was well equilibrated. The progenitor case H3 is
very similar to case G3 reported in Brown et al. (2008), but here

we chose a functional form for the SGS entropy diffusion κ0
that is more confined to the upper 10% of the convection zone;
the unresolved flux here does not vary as much with rotation
rate. The effects of this change are subtle, resulting primarily in
slightly stronger latitudinal gradients of differential rotation and
temperature in the uppermost regions of the shell. The patterns
of convection are very similar to those found in case G3, though
here they are slightly more complex near the top of the shell,
and the Reynolds number remains high throughout the convec-
tion zone. Case H3 possesses intricate convective patterns and
a solar-like differential rotation profile, with fast zonal flow at
the equator and slower flows at the poles.

To initiate our dynamo case, a small seed dipole magnetic
field was introduced and evolved via the induction equation.
The energy in the magnetic fields is initially many orders of
magnitude smaller than the energy contained in the convective
motions, but these fields are amplified by shear and grow to
become comparable in energy to the convective motions.

Stellar dynamo simulations are computationally intensive, re-
quiring both high resolutions to correctly represent the velocity
fields and long time evolution to capture the equilibrated dynamo
behavior, which may include cyclic variations on timescales of
several years. The strong magnetic fields can produce rapidly
moving Alfvén waves which seriously restrict the Courant–
Friedrichs–Lewy (CFL) time step limits in the upper portions of
the convection zone. Case D3, rotating three times faster than
the current Sun, has been evolved for over 7000 days (or over
2 million time steps). We plan to report on a variety of other dy-
namo cases, some at higher turbulence levels and rotation rates,
in subsequent papers.

This dynamo simulation was conducted at magnetic Prandtl
number Pm = ν/η = 0.5, a value significantly lower than
employed in our previous solar simulations. In particular, Brun
et al. (2004) explored Pm = 2, 2.5, and 4, and Browning et al.
(2006) studied Pm = 8. The high magnetic Prandtl numbers
were required in the solar simulations to reach sufficiently high
magnetic Reynolds numbers to drive sustained dynamo action.
In the simulations of Brun et al. (2004) only the simulations with
Pm > 2.5 and Rm′ � 300 achieved sustained dynamo action,
where Rm′ is the fluctuating magnetic Reynolds number. We
are here able to use a lower magnetic Prandtl number for three
reasons. First, more rapid rotation tends to stabilize convection
and lower values of ν and η are required to drive the convection.
Once convective motions begin, they become quite vigorous
and the fluctuating velocities saturate at values comparable to
our solar cases. Thus, the Reynolds numbers achieved are fairly
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Convective structures and mean flows in cases D3 and H3. (a) Radial velocity vr in dynamo case D3, shown in global Mollweide projection at 0.95 R�, with
upflows light and downflows dark. Poles are at top and bottom and the equator is the thick dashed line. The stellar surface at R� is indicated by the thin surrounding
line. (b) Profiles of mean angular velocity Ω(r, θ ), accompanied in (c) by radial cuts of Ω at selected latitudes. A strong differential rotation is established by the
convection. (d) Profiles of meridional circulation, with sense of circulation indicated by color (red counterclockwise, blue clockwise) and streamlines of mass flux
overlaid. (e)–(h) Companion presentation of fields for hydrodynamic progenitor case H3. The patterns of radial velocity are very similar in both cases. The differential
rotation is much stronger in the hydrodynamic case and the meridional circulations there are somewhat weaker, though their structure remains similar.

(A color version of this figure is available in the online journal.)

large and we can achieve modestly high magnetic Reynolds
numbers even at low Pm. Second, the differential rotation
becomes substantially stronger with both more rapid rotation Ω0
and with lower diffusivities ν and η. This global-scale flow is an
important ingredient and reservoir of energy for these dynamos,
and the increase in its amplitude means that low Pm dynamos
can still achieve large magnetic Reynolds numbers based on this
zonal flow. Lastly, the critical magnetic Reynolds number for
dynamo action likely decreases with increasing kinetic helicity
(e.g., Leorat et al. 1981), and helicity generally increases with
rotation rate (e.g., Käpylä et al. 2009). Indeed, there are even
suggestions that the presence of a mean shearing flow may
lower the critical magnetic Reynolds number (Hughes & Proctor
2009), and the strong differential rotation present in these rapidly
rotating suns may serve to lower this threshold for dynamo
action. We find that the rapidly rotating flows considered here
achieve dynamo action at somewhat lower Rm than the models
of Brun et al. (2004), which rotated at the solar rate.

3. DYNAMOS WITH PERSISTENT MAGNETIC WREATHS

We here explore case D3 which yields fairly persistent
wreaths of magnetism in its two hemispheres, though these
do wax and wane somewhat in strength once established.
Examining the properties of this dynamo solution should help
to provide a perspective for the greater variations realized in our
time-dependent dynamos which will be discussed in a following
paper.

3.1. Patterns of Convection

The complex and evolving convective structures in our dy-
namo cases are substantially similar to the patterns of convection
found in our hydrodynamic simulations. Our dynamo solution
rotating at three times the solar rate, case D3, is presented in
Figure 1, along with its hydrodynamic progenitor, case H3. The

radial velocities shown near the top of the simulated domain
(Figures 1(a) and (e)) have broad upflows and narrow down-
flows as a consequence of the compressible motions. Near the
equator the convection is aligned largely in the north–south di-
rection, and these broad fronts sweep through the domain in
a prograde fashion. The strongest downflows penetrate to the
bottom of the convection zone; the weaker flows are partially
truncated by the strong zonal flows of differential rotation. In
the polar regions, the convection is more isotropic and cyclonic.
There the networks of downflow lanes surround upflows and
both propagate in a retrograde fashion.

The convection establishes a prominent differential rotation
profile by redistributing angular momentum and entropy, build-
ing gradients in latitude of angular velocity and temperature.
Figures 1(b) and (f) show the mean angular velocity Ω(r, θ ) for
cases D3 and H3, revealing a solar-like structure with a prograde
(fast) equator and retrograde (slow) pole. Figures 1(c) and (g)
present in turn radial cuts of Ω at selected latitudes, which are
useful as we consider the angular velocity patterns realized here
with faster rotation. These Ω(r, θ ) profiles are averaged in az-
imuth (longitude) and time over a period of roughly 200 days.
Contours of constant angular velocity are aligned nearly on
cylinders, influenced by the Taylor–Proudman theorem.

In the Sun, helioseismology has revealed that the contours of
angular velocity are aligned almost on radial lines rather than
on cylinders. The tilt of Ω contours in the Sun may be due
in part to the thermal structure of the solar tachocline, as first
found in the mean-field models of Rempel (2005) and then in 3D
simulations of global-scale convection by Miesch et al. (2006).
In those computations, it was realized that introducing a weak
latitudinal gradient of entropy at the base of the convection zone,
consistent with a thermal wind balance in a tachocline of shear,
can serve to tilt the Ω contours toward a more radial alignment
without significantly changing either the overall Ω contrast with
latitude or the convective patterns. Ballot et al. (2007) explored
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Table 2
Near-surface ΔΩ

Case ΔΩlat ΔΩr ΔΩlat/Ωeq Epoch

D3 1.18 0.71 0.137 2010–6980
H3 2.22 0.94 0.246 · · ·

Notes. Angular velocity shear in units of μrad s−1, with ΔΩlat

measured near the surface (0.97 R�) and ΔΩr measured across
the full shell at the equator. The relative latitudinal shear ΔΩlat/Ωeq

is also measured at the same point near the surface. For the dynamo
case, these measurements are taken over the indicated range of days.
Case D3 shows slow variations in ΔΩlat over periods of about 2000
days. The hydrodynamic case is averaged for roughly 300 days and
shows no systematic variation on longer timescales.

the consequences of such a boundary condition in one of their
simulations of young, rapidly rotating suns with deep convection
zones and found that the effects on the differential rotation were
similar to those found in Miesch et al. (2006). We expect similar
behavior here, but at present observations of rapidly rotating
stars only measure differential rotation at the surface and do
not offer constraints on either the existence of tachoclines in
young suns or the nature of their internal differential rotation
profiles. As such, we have neglected the possible tachoclines of
penetration and shear entirely in these models and instead adopt
the simplification of imposing a constant radial entropy gradient
at the bottom of the convection zone.

The differential rotation achieved is stronger in our hydro-
dynamic case H3 than in our dynamo case D3. This can be
quantified by measurements of the latitudinal angular velocity
shear ΔΩlat. Here, as in Brown et al. (2008), we define ΔΩlat
as the shear near the surface between the equator and a high
latitude, say ±60◦

ΔΩlat = Ωeq − Ω60, (12)

and the radial shear ΔΩr as the angular velocity shear between
the surface and bottom of the convection zone near the equator

ΔΩr = Ω0.97 R� − Ω0.72 R� . (13)

We further define the relative shear as ΔΩlat/Ωeq. In both
definitions, we average the measurements of ΔΩ in the northern
and southern hemispheres, as the rotation profile is often slightly
asymmetric about the equator. Case H3 achieves an absolute
contrast ΔΩlat of 2.22 μrad s−1 (352 nHz) and a relative contrast
of 0.247. The strong global-scale magnetic fields realized in
the dynamo case D3 serve to diminish the differential rotation.
As such, this case achieves an absolute contrast ΔΩlat of only
1.18 μrad s−1 (188 nHz) and a relative contrast of 0.137. This
results from both a slowing of the equatorial rotation rate and an
increase in the rotation rate in the polar regions. These results
are quoted in Table 2.

The meridional circulations realized in the dynamo case D3
are very similar to those found in its hydrodynamic progenitor
(case H3). As illustrated in Figures 1(d) and (h), the circulations
are multi-celled in radius and latitude. The cells are strongly
aligned with the rotation axis, though some flows along the
inner and outer boundaries cross the tangent cylinder and serve
to weakly couple the polar regions to the equatorial convection.
Flows of meridional circulation are slightly stronger in the
dynamo cases than in the purely hydrodynamic cases, though
both cases have weaker flows than are found in simulations
rotating at the solar rate. Thus, as found in Brown et al. (2008),
the flows of meridional circulation appear to weaken with

more rapid rotation. The multi-celled nature of these meridional
circulations may hold implications for flux transport dynamo
models (e.g., Jouve & Brun 2007). Recent mean-field dynamo
models are also beginning to explore the implications of weaker
and multi-celled meridional circulations for dynamo action in
more rapidly rotating suns (e.g., Jouve et al. 2010).

3.2. Kinetic and Magnetic Energies

Convection in these rapidly rotating dynamos is responsible
for building the differential rotation and the magnetic fields. In
a volume-averaged sense, the energy contained in the magnetic
fields in case D3 is about 10% of the kinetic energy. About 35%
of this kinetic energy is contained in the fluctuating convection
(CKE) and about 65% in the differential rotation (DRKE),
whereas the weaker meridional circulations contain only a small
portion (MCKE). The magnetic energy is split between the
contributions from fluctuating fields (FME), involving roughly
53% of the total magnetic energy, and the energy of the mean
toroidal fields (TME) that are 43% of the total. The energy
contained in the mean poloidal fields (PME) is only 4% of the
total magnetic energy. These energies are defined as

CKE = 1

2
ρ̄[(vr − 〈vr〉)2 + (vθ − 〈vθ 〉)2

+ (vφ − 〈vφ〉)2], (14)

DRKE = 1

2
ρ̄〈vφ〉2, (15)

MCKE = 1

2
ρ̄(〈vr〉2 + 〈vθ 〉2), (16)

FME = 1

8π
[(Br − 〈Br〉)2 + (Bθ − 〈Bθ 〉)2

+ (Bφ − 〈Bφ〉)2], (17)

TME = 1

8π
〈Bφ〉2, (18)

PME = 1

8π
(〈Br〉2 + 〈Bθ 〉2), (19)

where angle brackets denote an average in longitude.
These results are in contrast to our previous simulations of the

solar dynamo, where the mean fields contained only about 2% of
the magnetic energy and the fluctuating fields contained nearly
98% (Brun et al. 2004). In simulations of the solar dynamo
that included a stable tachocline at the base of the convection
zone (Browning et al. 2006), the energy of the mean fields in
the tachocline can exceed the energy of the fluctuating fields
there by about a factor of 3, though the fluctuating fields still
dominate the magnetic energy budget within the convection
zone itself. Simulations of dynamo activity in the convecting
cores of A-type stars (Brun et al. 2005) achieved similar results.
There in the stable radiative zone the energies of the mean fields
were able to exceed the energy contained in the fluctuating
fields, but in the convecting core the fluctuating fields contained
roughly 95% of the magnetic energy. Simulations of dynamo
action in fully convective M-stars do, however, show high levels
of magnetic energy in the mean fields (Browning 2008). In
those simulations, the fluctuating fields still contain much of the
magnetic energy, but the mean toroidal fields possess about 18%
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(a) (b)

(c) (d)

(e) (f )

Figure 2. Magnetic wreaths and convective flows sampled at the same instant in case D3. (a) Longitudinal magnetic field Bφ near the top of the shell (0.95 R�) and
(b) at mid-depth (0.85 R�). Strong flux structures with opposite polarity lie above and below the equator and span the convection zone. (c) and (d) Weaker radial
magnetic field Br permeates and encircles each wreath. (e) and (f) Strong convective upflows and downflows shown by Vr pass through and around the wreaths. The
regions of strong magnetism tend to disrupt the convective flows while the strongest downflows serve to pump the wreaths to greater depths.

(A color version of this figure is available in the online journal.)

Table 3
Energies

Case CKE DRKE MCKE FME TME PME

D3 2.31 4.35 0.010 0.36 0.29 0.029
H3 2.56 22.2 0.012 · · · · · · · · ·

Notes. Volume-averaged energy densities relative to the rotating coordinate
system. Kinetic energies are shown for convection (CKE), differential rotation
(DRKE), and meridional circulations (MCKE). Magnetic energies are shown
for fluctuating magnetic fields (FME), mean toroidal fields (TME), and mean
poloidal fields (PME). All energy densities are reported in units of 106 erg cm−3

and are averaged over 1000 day periods.

of the total throughout most of the stellar interior. In our rapidly
rotating suns, the mean fields comprise a significant portion of
the magnetic energy in the convection zone and are as important
as the fluctuating fields.

These volume-averaged energies are reported for the dynamo
case D3 and the hydrodynamic case H3 in Table 3. Convection
is similarly strong in both rapidly rotating cases, and CKE is
similar in magnitude. The differential rotation in the dynamo
case is much weaker than in the hydrodynamic progenitor,
and DRKE has decreased by about a factor of 5. Meridional
circulations are comparably weak in both cases.

4. WREATHS OF MAGNETISM

These rapidly rotating dynamos produce striking magnetic
structures in the midst of their turbulent convection zones.
The magnetic field is organized into large banded, wreath-like

structures positioned near the equator and spanning the depth
of the convection zone. These wreaths are shown for case D3
at two depths in the convection zone in Figure 2. The dominant
component of the magnetic wreaths is the strong longitudinal
field Bφ , with each wreath possessing its own polarity. The
average strength of the longitudinal field at mid-convection
zone is ±7 kG and peak field strengths there reach roughly
±26 kG. Threaded throughout the wreaths are weaker radial
and latitudinal magnetic fields, which connect the two structures
across the equator and also to the high-latitude regions.

These wreaths of magnetism survive despite being embed-
ded in vigorous convective upflows and downflows. The con-
vective flows leave their imprint on the magnetic structures,
with individual downflow lanes entraining the magnetic field,
advecting it away, and stretching it into Br while leaving re-
gions of locally reduced Bφ . The slower upflows carry stronger
Bφ up from the depths. Where the magnetism is particularly
strong the convective flows are disrupted. Meanwhile, where
the convective flows are strongest, the longitudinal magnetic
field is weakened and appears to vanish. In reality, the magnetic
wreaths here are diving deeper below the mid-convection zone,
apparently pumped down by the pummeling action of the strong
downflows.

The deep structure of these wreaths is revealed by field
line tracings throughout the volume, shown in Figure 3 for
the same instant in time. The wreaths are topologically leaky
structures, with magnetic field lines threading in and out of
the surrounding convection. The wreaths are connected to the
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(a) (b) (c)A

A A

Figure 3. Field line tracings of magnetic wreaths in case D3. (a) Snapshot of two wreaths in full volume at same instant as in Figure 2. Lines trace the magnetic fields,
color denoting the amplitude and polarity of the longitudinal field Bφ (red, positive; blue, negative). Magnetic field threads in and out of the wreaths, connecting the
two opposite polarity structures across the equator (i.e., region A) and to the polar regions where the magnetic field is wound up by the cyclonic convection. (b) Same
snapshot showing south polar region. (c) Zoom in on region A showing the complex interconnections across the equator between the two wreaths and to high latitudes.
Convective flows create the distinctive waviness visible in all three images.

(A color version of this figure is available in the online journal.)

(a)

(c)

(b)

Figure 4. Persistent wreaths of magnetism in case D3. (a) Time–latitude plots of azimuthally averaged longitudinal field 〈Bφ〉 at mid-convection zone (0.85 R�) in
a view spanning latitudes from ±70◦, with scaling values indicated. The two wreaths of opposite polarity persist for more than 4000 days. (b) Mean colatitudinal
magnetic field 〈Bθ 〉 at mid-convection zone over same interval. (c) Snapshots of Bφ in Mollweide projection at mid-convection zone, shown for three times indicated in
a, b. The wreaths maintain constant polarity over long time intervals, but still show variation as they interact with the convection. Time t2 corresponds to the snapshot
in Figure 2(b).

(A color version of this figure is available in the online journal.)

high-latitude (polar) convection, and on the poleward edges they
show substantial winding from the highly vortical convection
found there. This occurs in both the northern and southern
hemispheres, as shown in two views at the same instant (north,
Figure 3(a) and south, Figure 3(b)). It is here that the global-
scale poloidal field is being regenerated by the coupling of
fluctuating velocities and fluctuating fields. Magnetic fields
cross the equator, tying the two wreaths together at many
locations (Figure 3(c)). The strongest convective downflows
leave their imprint on the wreaths as regions where the field lines
are dragged down deeper into the convection zone, yielding a
wavy appearance to the wreaths as a whole.

4.1. Wreaths Persist for Long Epochs

The wreaths of magnetism built in case D3 persist for long
periods of time, with little change in strength and no reversals
in global-scale polarity for as long as we have pursued these
calculations. The long-term stability of the wreaths realized
by the dynamo of case D3 is shown in Figure 4. Here, the
azimuthally averaged longitudinal field 〈Bφ〉 and colatitudinal
field 〈Bθ 〉 are shown at mid-convection zone at a point after the
dynamo has equilibrated and for a period of roughly 5000 days
(i.e., several ohmic diffusion times). During this interval, there
is little change in either the amplitude or structure of the mean

fields. This is despite the short overturn times of the convection
(10–30 days) or the rotation period of the star (∼9 days). The
ohmic diffusion time at mid-convection zone is approximately
1300 days.

Though the mean (global-scale) fields are roughly steady
in nature (Figures 4(a) and (b)), the magnetic field interacts
strongly with the convection on smaller scales. Several samples
of longitudinal field Bφ are shown in full Mollweide projection
at mid-convection zone (Figure 4(c)). The magnetic fields are
clearly reacting on short timescales to the convection but the
wreaths maintain their coherence.

There are also some small but repeated variations in the
global-scale magnetic fields. Visible in Figure 4(b) are events
where propagating structures of 〈Bθ 〉 reach toward higher
latitudes over periods of about 1000 days (i.e., from day
3700 to day 4500 and from day 5600 to day 6400). These
are accompanied by slight variations in the volume-averaged
magnetic energy densities and the comparable kinetic energy
of the differential rotation. These variations are also visible
in the differential rotation itself, as shown in Figure 5. The
differential rotation is fairly stable, though some time variation
is visible at high latitudes. This is better revealed (Figure 5(b))
by subtracting the time-averaged profile of Ω at each latitude,
revealing the temporal variations about this mean. In the polar
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(a)

(b)

(c)

Figure 5. Differential rotation in case D3. (a) Angular velocity Ω at mid-
convection zone (0.85 R�), with ranges in both nHz and μrad s−1. The equator
is fast while the poles rotate more slowly. (b) Temporal variations are emphasized
by subtracting the time-averaged profile of Ω(r, θ ), revealing speedup structures
at high latitudes and pulses of fast and slow motion near the equator. (c) Angular
velocity shear ΔΩlat (Equation (12)) near the surface (upper curve, green) and
at mid-convection zone (lower, red).

(A color version of this figure is available in the online journal.)

regions above ±40◦ latitude, speedup features move poleward
over 500 day periods. These features track similar structures
visible in the mean magnetic fields (Figure 4(b)). The bands
of velocity speedup bear some resemblance to the poleward
branch of torsional oscillations observed in the solar convection
zone over the course of a solar magnetic activity cycle (e.g.,
Thompson et al. 2003; Howe 2009), though here they propagate
to higher latitudes on a shorter timescale.

The temporal variations of the angular velocity contrast in
latitude ΔΩlat are shown for this period in Figure 5(c). At mid-
convection zone (sampled by red line) the variations in ΔΩlat
are modest, varying by roughly 8%. Near the surface (green
line) ΔΩlat shows similar variations with amplitudes of about
6%. The near-surface values of ΔΩlat are reported in Table 2,
averaged over this entire period.

These evolving structures of magnetism and faster and slower
differential rotation appear to be the first indications of behavior
where the mean fields themselves begin to wax and wane
substantially in strength. As the magnetic Reynolds number
is increased, by either decreasing the magnetic diffusivity η
or by increasing the rotation rate of the star Ω0, this time-
varying behavior becomes more prominent and can even result
in organized changes in the global-scale polarity. Such behavior
is evident in a number of our dynamo simulations and will be
reported on in a subsequent paper.

5. CREATING MAGNETIC WREATHS

The magnetic wreaths formed in case D3 are dominated by
strong mean longitudinal field components and show little vari-

ation in time. To understand the physical processes responsible
for maintaining these magnetic wreaths, we examine the terms
arising in the time- and azimuth-averaged induction equation
for case D3.

5.1. Maintaining Wreaths of Toroidal Field

We begin our analysis by exploring the maintenance of the
mean toroidal field 〈Bφ〉. Here, it is helpful to break the induction
term from Equation (4) into contributions from shear, advection,
and compression, namely,

∇ × (v × B) = (B · ∇) v︸ ︷︷ ︸
shear

− (v · ∇) B︸ ︷︷ ︸
advection

− B (∇ · v)︸ ︷︷ ︸
compression

. (20)

Details of this decomposition are given in the Appendix.
The evolution of the mean longitudinal (toroidal) field 〈Bφ〉

is described symbolically in Equation (A8), with individual
terms defined in Equation (A9). When we analyze these terms
in case D3, we find that 〈Bφ〉 is produced by the shear of
differential rotation and is dissipated by a combination of
turbulent induction and ohmic diffusion. This balance can be
restated as

∂〈Bφ〉
∂t

≈ PMS + (PFS + PFA + PMD) ≈ 0 , (21)

with PMS representing production by the mean shearing flow of
differential rotation, PFS by fluctuating shear, PFA by fluctuating
advection, and PMD by mean ohmic diffusion. Those terms are
in turn

PMS = (〈B〉 · ∇) 〈v〉|φ, (22)

PFS = 〈(B′ · ∇)v′〉|φ, (23)

PFA = −〈(v′ · ∇)B′〉|φ, (24)

PMD = −∇ × η∇ × 〈B〉|φ, (25)

where brackets again indicate an azimuthal average and primes
indicate fluctuating terms: v′ = v−〈v〉. The detailed implemen-
tation of these terms is presented for our spherical geometry in
Equations (A10)–(A16). These terms are illustrated in Figure 6
for case D3, averaged over a 450 day interval from day 6450 to
6900.

The structure of 〈Bφ〉 is shown in Figure 6(a). The shearing
flows of differential rotation PMS (Figure 6(b)) act almost
everywhere to reinforce the mean toroidal field. Thus, the
polarity of this production term generally matches that of 〈Bφ〉.
This production is balanced by destruction of mean field arising
from both turbulent induction and ohmic diffusion (sum shown
in Figure 6(c)). The individual profiles of PFS, PFA, and PMD are
presented in turn in Figures 6(d), (e), and (f). The terms from
turbulent induction (PFS and PFA) contribute to roughly half of
the total balance, with the remainder carried by ohmic diffusion
of the mean fields (PMD). In the core of the wreaths, removal
of mean toroidal field is largely accomplished by fluctuating
advection PFA (Figure 6(e)) and mean ohmic diffusion PMD
(Figure 6(f)), with the latter also important near the upper
boundary. Turbulent shear becomes strongest near the bottom of
the convection zone and in the regions near the high-latitude side
of each wreath. Thus PFS (Figure 6(d)) becomes the dominant
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(a) (b) (c) (d) (e) (f)

Figure 6. Generation of mean toroidal magnetic field in case D3. The view is from ±45◦ latitude to emphasize the equatorial regions. (a) Mean toroidal field 〈Bφ〉
with wreaths strongly evident. (b) Production by PMS serves to build 〈Bφ〉. This rate term generally matches the sense of 〈Bφ〉, thus being negative (blue in colorbar,
with ranges indicated) in the core of the northern wreath and positive (red) in that of the southern wreath. (c) Destruction of mean toroidal field is achieved by the sum
of the two fluctuating (turbulent) induction terms and the ohmic diffusion (PFS + PFA + PMD). This sum clearly has opposite sense and similar magnitude to PMS. We
break out these three destruction terms in the following panels. (d) Fluctuating (turbulent) shear PFS is strongest near the high-latitude side of each wreath, and (e)
fluctuating (turbulent) advection PFA is strongest in the cores of the wreaths. The sum of these terms (PFS + PFA) is responsible for about half the destructive balance,
with the remainder coming from (f) the mean ohmic diffusion PMD. Some differences arise in the boundary layers at top and bottom.

(A color version of this figure is available in the online journal.)

member of the triad of terms seeking to diminish the mean
toroidal field there. We find that the mean poloidal field is
regenerated in roughly the same region.

In the analysis presented in Figure 6, we have neglected the
advection of 〈Bφ〉 by the meridional circulations (shown in the
Appendix as PMA), which we find plays a very small role in
the overall balance. We have also neglected the amplification
of 〈Bφ〉 by compressibility effects (see the Appendix, PMC
and PFC), though it does contribute slightly to reinforcing the
underlying mean fields within the wreaths.

To summarize, the mean toroidal fields are built through
an Ω-effect, where production by the mean shearing flow of
differential rotation (PMS) builds the underlying 〈Bφ〉. In the
statistically steady state achieved, this production is balanced
by a combination of turbulent induction (PFS + PFA) and ohmic
diffusion of the mean fields (PMD).

5.2. Maintaining the Poloidal Field

The production of mean poloidal field is achieved through
a slightly different balance, with turbulent induction producing
poloidal field and ohmic diffusion acting to dissipate it. The
mean flows play little role in the overall balance. This balance
is clarified if we represent the mean poloidal field by its vector
potential 〈Aφ〉, where

〈Bpol〉 = 〈Br〉r̂ + 〈Bθ 〉θ̂ = ∇ × 〈Aφφ̂〉, (26)

as discussed in the Appendix. We recast the induction
Equation (4) in terms of the poloidal vector potential by un-
curling the equation once, obtaining

∂〈Aφ〉
∂t

= 〈v × B〉|φ − η∇ × 〈B〉|φ, (27)

which is also Equation (A32) in the Appendix. The first term
is the electromotive force (emf) arising from the coupling of
flows and magnetic fields, and the second term is the ohmic

diffusion. These can be decomposed into contributions from
mean and fluctuating components, as shown symbolically in
Equation (A33).

In case D3, we find that the mean poloidal vector potential
〈Aφ〉 is produced by the fluctuating (turbulent) emf and is
dissipated by ohmic diffusion

∂〈Aφ〉
∂t

≈ EFI + EMD ≈ 0 , (28)

with EFI the emf arising from fluctuating flows and fluctuating
fields, and contributing to the mean induction. The EMD is the
emf arising from mean ohmic diffusion. These terms are

EFI = 〈v′ × B′〉|φ = 〈v′
rB

′
θ 〉 − 〈v′

θB
′
r〉, (29)

EMD = −η∇ × 〈B〉|φ. (30)

The contribution arising from the omitted term EMI (see
Equation (A34)), related to the emf of mean flows and mean
fields, is smaller than these first two by more than an order of
magnitude. Additionally, EMI has a complicated spatial struc-
ture which does not appear to act in a coherent fashion within
the wreaths to either build or destroy mean poloidal field.

The mean vector potential 〈Aφ〉 is shown in Figure 7(a), with
poloidal field lines represented by the overlying contours. The
mean radial magnetic field 〈Br〉 is about ±1 kG in the cores of
the wreaths, whereas the mean colatitudinal field 〈Bθ 〉 has an
amplitude of roughly −2 kG (thus directed northward in both
hemispheres), concentrated near the bottom of the convection
zone.

The production of 〈Aφ〉 by the fluctuating (turbulent) emf
EFI is shown in Figure 7(b). Here too, we average over the
same 450 day interval. This term generally acts to reinforce the
existing poloidal field, having the same sense as the underlying
vector potential in most regions. It is strongest near the bottom
of the convection zone and is concentrated at the poleward side
of each wreath. This is similar, though not identical, to the
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(a) (b) (c)

Figure 7. Production of mean poloidal vector potential 〈Aφ〉 in case D3, with
view restricted to ±45◦ latitude. (a) Mean poloidal vector potential 〈Aφ〉,
with sense denoted by color (red, clockwise; blue, counterclockwise). (b) The
fluctuating (turbulent) emf EFI acts to build the vector potential. This term is
strongest near the bottom of the convection zone and the poleward side of the
wreaths. (c) Mean ohmic diffusion EMD acts everywhere in opposition to EFI.
The cores of the wreaths are positioned at roughly ±15◦ latitude (Figure 6(a)).

(A color version of this figure is available in the online journal.)

structure of destruction of mean toroidal field by fluctuating
shear PFS (Figure 6(d)). It suggests that mean toroidal field is
here being converted into mean poloidal field by the fluctuating
flows.

There are two terms that contribute to EFI, as shown in
Equation (29). Much of that fluctuating emf arises from cor-
relations between fluctuating latitudinal flows and radial fields
〈−v′

θB
′
r〉, which follows the structure of EFI (Figure 7(b))

closely. The contribution from fluctuating radial flows and colat-
itudinal fields 〈v′

rB
′
θ 〉 is more complex in structure. Near ±20◦

latitude, this term reinforces 〈−v′
θB

′
r〉, but acts against it at

higher latitudes and thus diminishes the overall amplitude of
EFI. The mean ohmic diffusion EMD (Figure 7(c)), almost en-
tirely balances the production of 〈Aφ〉 by EFI.

This shows that our mean poloidal magnetic field is main-
tained by the fluctuating (turbulent) emf and is destroyed by
ohmic diffusion. In mean-field dynamo theory, this is often pa-
rameterized by an “α-effect.” Now we turn to interpretations
within that framework.

6. EXPLORING MEAN-FIELD INTERPRETATIONS

Many mean-field theories assert that the production of mean
poloidal field is likely to arise from the fluctuating emf. This
process is often approximated with an α-effect, where it is
proposed that the sense and amplitude of the emf scales with
the mean toroidal field

〈v′ × B′〉 = α〈B〉, (31)

where α can be either a simple scalar or may be related to the
kinetic and magnetic (current) helicities. In isotropic (but not
reflectionally symmetric), homogeneous, incompressible MHD
turbulence

α = τ

3
(αk + αm) , (32)

αk = − v′ · (∇ × v′), (33)

αm = 1

4πρ
B′ · (∇ × B′), (34)

as discussed in Pouquet et al. (1976) and Brandenburg &

(a) (b) (c)

Figure 8. Estimating the mean-field α-effect from case D3. Shown are
the (a) kinetic and (b) magnetic contributions to the α-effect as defined in
Equations (32)–(34). (c) Mean-field α, constructed by combining αk and αm

with a turbulent correlation time τ .

(A color version of this figure is available in the online journal.)

Subramanian (2005). Here, τ is the lifetime or correlation
time of a typical turbulent eddy. In mean-field theory, these
fluctuating helicities are typically not solved directly and are
instead solved through auxiliary equations for the total magnetic
helicity or are prescribed. Here, we can directly measure our
fluctuating helicities and examine whether they approximate
our fluctuating emf.

To assess the possible role of an α-effect in our simulation,
we show in Figures 8(a) and (b) the fluctuating kinetic and
current helicities αk and αm realized in our case D3, averaged
over the same 450 day analysis interval. To make an estimate of
the α-effect, we approximate the correlation time τ by defining

τ = HP

v′ , (35)

where HP is the local pressure scale height and v′ is the
local fluctuating rms velocity, which are functions of radius
only. Estimated by this method, the turnover time τ has a
smooth radial profile and is roughly 10 days near the bottom
of the convection zone, 3 days at mid-convection zone, and
slightly less near the upper boundary. If we use the fast peak
upflow or downflow velocities instead of the rms velocities, our
estimate of τ is about a factor of 4 smaller. Our mean-field α
(Equation (32)) is shown in Figure 8(c). In the upper convection
zone, this is dominated by the fluctuating kinetic helicity while
the fluctuating magnetic (current) helicity becomes important at
depth.

We form a mean-field emf (right-hand side of Equation (31))
by multiplying our derived α (Figure 8(c)) with our 〈Bφ〉
(Figure 6(a)), and show this in Figure 9(a). The turbulent
emf EFI, which is the left-hand side of Equation (31), can be
measured in our simulations and is shown again in Figure 9(b).
Although there is some correspondence in the two patterns,
there are significant differences. In particular, the mean-field emf
α〈Bφ〉 has peak amplitudes in the cores of the wreaths (at ±15◦
latitude) and is negative there. In contrast, the actual fluctuating
emf given by EFI is positive and has its highest amplitude at
the poleward side of the wreaths (near ±20◦ latitude). Thus, the
mean-field emf predicts an incorrect balance in the generation
terms and would yield a distinctly different mean poloidal
magnetic field.
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(a) (b) (c)

Figure 9. Comparison of emfs in case D3. (a) Profile of proposed mean-field
emf given by α〈Bφ〉. (b) Actual turbulent emf EFI measured in the dynamo.
(c) Variation of hemisphere-averaged emfs with fractional radius. The mean-
field approximated emf is shown in blue, and EFI in red. The average over the
northern hemisphere is shown solid, the southern is dashed.

(A color version of this figure is available in the online journal.)

To assess whether better agreement may be achieved with
a latitude-averaged emf, we average the mean-field emf and
EFI separately over the northern and southern hemispheres
and plot these quantities in Figure 9(c). Though both have a
similar positive sense near the base of the convection zone, the
hemisphere-averaged EFI becomes small above 0.8 R� whereas
the averaged mean-field emf α〈Bφ〉 is large and negative there.
Thus, even the averaged emfs are not in accord.

In summary, it is evident that a simple scalar α-effect will
predict the wrong sign for the fluctuating emf in the two hemi-
spheres, as 〈Bφ〉 is anti-symmetric across the equator while 〈Aφ〉
is symmetric. An α-effect based on the kinetic helicity and mag-
netic helicity may capture some sense of the fluctuating emf, as
those quantities are themselves anti-symmetric across the equa-
tor. Yet Figure 9 suggests that there are significant discrepancies
between this particular approximation and our turbulent emf. In
particular, this mean-field α-effect misses the offset between the
generation regions for mean toroidal and mean poloidal field.
This offset in latitude of the generation regions may be im-
portant for avoiding the α-quenching problems encountered in
many mean-field theories. A more complex mean-field model,
which takes spatial gradients of 〈Bφ〉 into account, may do bet-
ter. In particular, the Ω× J-effect (e.g., Moffatt & Proctor 1982;
Rogachevskii & Kleeorin 2003) may be at work in these
systems, and preliminary explorations indicate that this term
matches the spatial structure of our EFI better than the above α-
effect. A tensor representation of the α-effect may also do much
better at approximating EFI, and test-field techniques could be
employed to measure this quantity (e.g.,Schrinner et al. 2005,
and recently reviewed in Brandenburg 2009). As with our anal-
ysis of dynamo production terms presented in Section 5, this
comparative study of α〈Bφ〉 and EFI is conducted here for the
special circumstances of a dynamo which builds global-scale
magnetic fields that are nearly steady in time. The magnetic
wreaths realized in dynamos at higher magnetic Reynolds num-
bers show larger time variations, and it is possible that α〈Bφ〉
better approximates EFI during the growing phase of each os-
cillation, when the magnetic fields have not yet saturated in
strength and the dynamo is in a more kinematic regime.

7. CONCLUSIONS

The ability for a dynamo to build wreaths of strong magnetic
fields in the bulk of the convection zone has largely been
a surprise, for it had generally been supposed that turbulent

convection would disrupt such magnetic structures. To avoid
these difficulties, many solar and stellar dynamo theories shift
the burden of magnetic storage, amplification and organization
to a tachocline of shear and penetration at the base of the
convection zone where motions are more quiescent. In contrast,
our simulations of rapidly rotating stars are able to achieve
sustained global-scale dynamo action within the convection
zone itself, with the magnetic structures both being built and able
to survive while embedded deep within the turbulence. These
dynamos are able to circumvent the Parker instability by means
of turbulent Reynolds and Maxwell stresses that contribute to
the mechanical force balance and prevent the wreaths from
buoyantly escaping the convection zone. This striking behavior
may be enabled by the stars rotating somewhat faster than the
current Sun, which yields a strong differential rotation that is a
key element in the dynamo behavior. In our broader exploration
of rapidly rotating dynamos, we find that magnetic wreaths are
present in all simulations, including those rotating as slowly
as 1.5 Ω�. Such structures may be obtainable in simulations
rotating at the solar rate as well, and efforts are underway to
explore the presence of wreaths in solar dynamos.

We have achieved some dynamo states that are persistent
and others that flip the sense of their magnetic fields. In our
case D3, the global-scale fields have small vacillations in their
amplitudes, but the magnetic wreaths retain their identities for
many thousands of days. This represents hundreds of rotation
periods and several magnetic diffusion times, indicating that the
dynamo has achieved a persistent equilibrium.

Increasing the rotation rate or decreasing the magnetic diffu-
sivity η yields more complex time dependence. In many of our
dynamos, the oscillations can become large, and this may result
in the global-scale fields repeatedly flipping their polarity. At
times those dynamos appear to be cyclic but in other intervals
they behave more chaotically. Such time-dependent dynamos
will be reported on in a forthcoming paper. In separate explo-
rations, we have found that magnetic wreaths also survive in the
presence of a tachocline of penetration and shear. In those sim-
ulations, the wreaths continue to fill the convection zone even
while developing roots in the tachocline. Dynamos in rapidly
rotating suns with tachoclines can also exhibit time-dependent
oscillations and polarity reversals. Wreath-building dynamos
with tachoclines will be reported on subsequently.

In our persistent case D3, we are able to analyze the
generation and transport of mean magnetic field. We find
that our dynamo action is of an α − Ω nature, with the
mean toroidal fields being generated by an Ω-effect from the
mean shearing flow of differential rotation. This generation is
balanced by a combination of turbulent induction and ohmic
diffusion. The mean poloidal fields appear to be generated by an
α-effect arising from couplings between the fluctuating flows
and fluctuating fields, with this production largely balanced by
the ohmic diffusion. This is unlike the toroidal balance, for here
the mean flows play almost no role and the turbulent correlations
are constructive rather than destructive. In assessing what a
mean-field model might predict for the magnetic structures
realized in case D3, we find that the isotropic, homogeneous
α-effect based on kinetic and magnetic (current) helicities fails
to capture the sense of our turbulent emf. In general, our EFI
is poorly represented by an α〈Bφ〉 that is so determined. This
comparative analysis of α〈Bφ〉 and EFI is performed here only
for the special case of a dynamo with persistent global-scale
magnetic fields. It is possible that these results will differ in our
dynamos that show substantial time-varying behavior.
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The realization of global-scale magnetic structures in our
simulations, and their great strength relative to the fluctuating
fields, may in part be a consequence of the relatively modest
degree of turbulence attained here. Whether such structures can
be generated and sustained amidst the far more complex flows
in actual stellar interiors is not yet clear. If such structures are
indeed realized in stars, they may or may not survive to print
through the highly turbulent convection occurring just below the
stellar photosphere. If they do appear at the surface, some global-
scale magnetic features may propagate toward the poles along
with the bands of angular velocity speedup. There are some
indications in stellar observations that global-scale toroidal
magnetic fields may indeed become strong in rapidly rotating
stars (Donati et al. 2006; Petit et al. 2008), though small-scale
fields may still account for much of the magnetic energy near
the surface (Reiners & Basri 2009). The global-scale poloidal
fields may be more successful in surviving the passage through
the turbulent surface convection. If they do, the stellar magnetic
field will likely have significant non-dipole components. Thus,
the mean poloidal fields observed at the surface may give clues
to the presence of large wreaths of magnetism that occupy the
bulk of the convection zone.
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APPENDIX

PRODUCTION, DESTRUCTION, AND TRANSPORT OF
MAGNETIC FIELD

We derive diagnostic tools to evaluate the generation and
transport of magnetic field in a magnetized and rotating turbulent
convection zone. This derivation is in spherical coordinates, and
is under the anelastic approximation.

A.1. Induction Equation

In the induction Equation (4), the first term on the right-hand
side represents production of magnetic field while the second
term represents its diffusion. We first rewrite the production term
to make the contributions of shear, advection, and compressible
effects more explicit as

∇ × (v × B) = (B · ∇)v − (v · ∇)B − B(∇· v). (A1)

Under the anelastic approximation, the divergence of v can be
expressed in terms of the logarithmic derivative of the mean

density because

∇· (ρ̄v) = 0 = ρ̄(∇· v) + (v · ∇)ρ̄,

and therefore

∇· v = −vr

∂

∂r
ln ρ̄. (A2)

The induction equation thus becomes

∂ B
∂t

= (B · ∇)v︸ ︷︷ ︸
shearing

− (v · ∇)B︸ ︷︷ ︸
advection

+ vr B
∂

∂r
ln ρ̄︸ ︷︷ ︸

compression

− ∇ × (η∇ × B)︸ ︷︷ ︸
diffusion

.

(A3)
As labeled, the first term represents shearing of B, the second
term advection of B, the third one compressible amplification
of B, and the last term ohmic diffusion.

A.2. Production of Axisymmetric Magnetic Field

To identify the processes contributing to the production
of mean (axisymmetric) field, we separate our velocities and
magnetic fields into mean and fluctuating components v =
〈v〉 + v′ and B = 〈B〉 + B′ where angle brackets denote an
average in longitude. Thus, 〈v′〉 = 〈B′〉 = 0 by definition.
Expanding the production term of Equation (A3), we obtain the
mean shearing term

〈(B · ∇)v〉 = (〈B〉 · ∇) 〈v〉 + 〈(B′ · ∇)v′〉, (A4)

the mean advection term

−〈(v · ∇)B〉 = − (〈v〉 · ∇) 〈B〉 − 〈(v′ · ∇)B′〉, (A5)

and the mean compressibility term

〈
vr B

∂

∂r
ln ρ̄

〉
= (〈vr〉〈B〉 + 〈v′

r B′〉) ∂

∂r
ln ρ̄. (A6)

In a similar fashion, the mean diffusion term becomes

−〈∇ × (η∇ × B)〉 = −∇ × (η∇ × 〈B〉). (A7)

The axisymmetric component of the induction equation is
written symbolically as

∂〈B〉
∂t

= PMS + PFS + PMA + PFA + PMC + PFC + PMD. (A8)

With PMS representing production of field by mean shear, PFS
production by fluctuating shear, PMA advection by mean flows,
PFA advection by fluctuating flows, PMC amplification arising
from the compressibility of mean flows, PFC amplification
arising from fluctuating compressible motions, and PMD ohmic
diffusion of the mean fields. In turn, these terms are

PMS = (〈B〉 · ∇) 〈v〉, PFS = 〈(B′ · ∇)v′〉,
PMA = − (〈v〉 · ∇) 〈B〉, PFA = −〈(v′ · ∇)B′〉,
PMC = (〈vr〉〈B〉) ∂

∂r
ln ρ̄, PFC = (〈v′

r B′〉) ∂

∂r
ln ρ̄, and

PMD = −∇ × (η∇ × 〈B〉). (A9)

We now expand each of these terms into their full representation
in spherical coordinates.
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A.3. Production of Mean Longitudinal Field

∂〈Bφ〉
∂t

= PMS + PFS + PMA + PFA + PMC + PFC + PMD

PMS =
[
〈Br〉 ∂

∂r
+

〈Bθ 〉
r

∂

∂θ

]
〈vφ〉 (A10)

+
〈Bφ〉〈vr〉 + cot θ〈Bφ〉〈vθ 〉

r
,

PFS =
〈 [

B ′
r

∂

∂r
+

B ′
θ

r

∂

∂θ
+

B ′
φ

r sin θ

∂

∂φ

]
v′

φ

〉

+
〈B ′

φv′
r〉 + cot θ〈B ′

φv′
θ 〉

r
, (A11)

PMA = −
[
〈vr〉 ∂

∂r
+

〈vθ 〉
r

∂

∂θ

]
〈Bφ〉

− 〈vφ〉〈Br〉 + cot θ〈vφ〉〈Bθ 〉
r

, (A12)

PFA = −
〈 [

v′
r

∂

∂r
+

v′
θ

r

∂

∂θ
+

v′
φ

r sin θ

∂

∂φ

]
B ′

φ

〉

− 〈v′
φB ′

r〉 + cot θ〈v′
φB ′

θ 〉
r

, (A13)

PMC = (〈vr〉〈Bφ〉) ∂

∂r
ln ρ̄, (A14)

PFC = (〈v′
rB

′
φ〉) ∂

∂r
ln ρ̄, (A15)

PMD = η∇2〈Bφ〉 − η〈Bφ〉
r2 sin2 θ

+
dη

dr

(
1

r

∂(r〈Bφ〉)
∂r

)
. (A16)

A.4. Production of Mean Latitudinal Field

∂〈Bθ 〉
∂t

= PMS + PFS + PMA + PFA + PMC + PFC + PMD

PMS =
[
〈Br〉 ∂

∂r
+

〈Bθ 〉
r

∂

∂θ

]
〈vθ 〉 (A17)

+
〈Bθ 〉〈vr〉 − cot θ〈Bφ〉〈vφ〉

r
,

PFS =
〈 [

B ′
r

∂

∂r
+

B ′
θ

r

∂

∂θ
+

B ′
φ

r sin θ

∂

∂φ

]
v′

θ

〉

+
〈B ′

θ v
′
r〉 − cot θ〈B ′

φv′
φ〉

r
, (A18)

PMA = −
[
〈vr〉 ∂

∂r
+

〈vθ 〉
r

∂

∂θ

]
〈Bθ 〉

− 〈vθ 〉〈Br〉 − cot θ〈vφ〉〈Bφ〉
r

, (A19)

PFA = −
〈 [

v′
r

∂

∂r
+

v′
θ

r

∂

∂θ
+

v′
φ

r sin θ

∂

∂φ

]
B ′

θ

〉

− 〈v′
θB

′
r〉 − cot θ〈v′

φB ′
φ〉

r
, (A20)

PMC = (〈vr〉〈Bθ 〉) ∂

∂r
ln ρ̄, (A21)

PFC = (〈v′
rB

′
θ 〉)

∂

∂r
ln ρ̄, (A22)

PMD = η∇2〈Bθ 〉 +
2η

r2

∂〈Br〉
∂θ

− η〈Bθ 〉
r2 sin2 θ

+
dη

dr

(
1

r

∂(r〈Bθ 〉)
∂r

− 1

r

∂〈Br〉
∂θ

)
, (A23)

A.5. Production of Mean Radial Field

∂〈Br〉
∂t

= PMS + PFS + PMA + PFA + PMC + PFC + PMD

PMS =
[
〈Br〉 ∂

∂r
+

〈Bθ 〉
r

∂

∂θ

]
〈vr〉 (A24)

− 〈Bθ 〉〈vθ 〉 + 〈Bφ〉〈vφ〉
r

,

PFS =
〈 [

B ′
r

∂

∂r
+

B ′
θ

r

∂

∂θ
+

B ′
φ

r sin θ

∂

∂φ

]
v′

r

〉

− 〈B ′
θ v

′
θ 〉 + 〈B ′

φv′
φ〉

r
, (A25)

PMA = −
[
〈vr〉 ∂

∂r
+

〈vθ 〉
r

∂

∂θ

]
〈Br〉

+
〈vθ 〉〈Bθ 〉 + 〈vφ〉〈Bφ〉

r
, (A26)

PFA = −
〈 [

v′
r

∂

∂r
+

v′
θ

r

∂

∂θ
+

v′
φ

r sin θ

∂

∂φ

]
B ′

r

〉

+
〈v′

θB
′
θ 〉 + 〈v′

φB ′
φ〉

r
, (A27)

PMC = (〈vr〉〈Br〉) ∂

∂r
ln ρ̄, (A28)

PFC = (〈v′
rB

′
r〉)

∂

∂r
ln ρ̄, (A29)

PMD = η∇2〈Br〉 − 2η
〈Br〉
r2

− 2η

r2

∂〈Bθ 〉
∂θ

− 2η cot θ〈Bθ 〉
r2

.

(A30)

A.6. Maintaining the Poloidal Vector Potential

The balances achieved in maintaining the mean poloidal
magnetic field are somewhat clearer if we consider its vector
potential rather than the fields themselves. The mean poloidal
field 〈Bpol〉 has a corresponding vector potential 〈Aφ〉, where

〈Bpol〉 = 〈Br〉r̂ + 〈Bθ 〉θ̂ = ∇ × 〈A|φ〉

= 1

r sin θ

∂

∂θ
〈Aφ sin θ〉r̂ − 1

r

∂

∂r
〈rAφ〉θ̂

= ∇ × 〈Aφφ̂〉.

(A31)
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The other components of the poloidal vector potential dis-
appear, as terms involving ∂/∂φ vanish in the azimuthally av-
eraged equations. Likewise, the φ-component of the possible
gauge term ∇λ is zero by virtue of axisymmetry. We recast the
induction equation (Equation (4)) in terms of the poloidal vector
potential by uncurling the equation once and obtain

∂〈Aφ〉
∂t

= v × B
∣∣
φ

− η∇ × B
∣∣
φ
. (A32)

This can then be decomposed into mean and fluctuating contri-
butions, and represented symbolically as

∂〈Aφ〉
∂t

= EMI + EFI + EMD, (A33)

with EMI representing the electromotive forces (emfs) arising
from mean flows and mean fields, and related to their mean
induction. Likewise, EFI is the emf from fluctuating flows and
fields and EMD is the emf arising from mean diffusion. These
are in turn

EMI = 〈v〉 × 〈B〉|φ = 〈vr〉〈Bθ 〉 − 〈vθ 〉〈Br〉, (A34)

EFI = 〈v′ × B′〉|φ = 〈v′
rB

′
θ 〉 − 〈v′

θB
′
r〉, (A35)

EMD = − η∇ × 〈B〉|φ
= − η

1

r

(
∂

∂r
(r〈Bθ 〉) − ∂〈Br〉

∂θ

)
. (A36)

A7. Fluctuating (Nonaxisymmetric) Component of the
Induction Equation

Left out of this analysis is the fluctuating component of
the induction equation. This can be derived by subtracting the
mean induction Equation (A8) from the full induction equation,
yielding the following equation for the fluctuating fields

∂ B′

∂t
= (〈B〉 · ∇)v′ + (B′ · ∇)〈v〉 + E

− (〈v〉 · ∇)B′ − (v′ · ∇)〈B〉 − F

+ (〈vr〉B′ + v′
r〈B〉) ∂

∂r
ln ρ̄ + G

− ∇ × (η∇ × 〈B′〉), (A37)

where the quantities E = (B′ · ∇)v′ − 〈(B′ · ∇)v′〉, F =
(v′ · ∇)B′ − 〈(v′ · ∇)B′〉, and G = (v′

r B′ − 〈v′
r B′〉) ∂

∂r
ln ρ̄,

represent the difference between mixed stresses from which
we subtract their axisymmetric mean. In the standard mean-
field derivation, these quantities are siblings of the G-current
involving the mean emf 〈v × B〉 and its 3D equivalent v × B
(i.e., the so-called pain in the neck term; Moffatt 1978).

REFERENCES

Baliunas, S., Sokoloff, D., & Soon, W. 1996, ApJ, 457, L99
Ballot, J., Brun, A. S., & Turck-Chièze, S. 2007, ApJ, 669, 1190
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