1,314 research outputs found

    Planetary Dynamics and Habitable Planet Formation In Binary Star Systems

    Full text link
    Whether binaries can harbor potentially habitable planets depends on several factors including the physical properties and the orbital characteristics of the binary system. While the former determines the location of the habitable zone (HZ), the latter affects the dynamics of the material from which terrestrial planets are formed (i.e., planetesimals and planetary embryos), and drives the final architecture of the planets assembly. In order for a habitable planet to form in a binary star system, these two factors have to work in harmony. That is, the orbital dynamics of the two stars and their interactions with the planet-forming material have to allow terrestrial planet formation in the habitable zone, and ensure that the orbit of a potentially habitable planet will be stable for long times. We have organized this chapter with the same order in mind. We begin by presenting a general discussion on the motion of planets in binary stars and their stability. We then discuss the stability of terrestrial planets, and the formation of potentially habitable planets in a binary-planetary system.Comment: 56 pages, 29 figures, chapter to appear in the book: Planets in Binary Star Systems (Ed. N. Haghighipour, Springer publishing company

    Signatures of arithmetic simplicity in metabolic network architecture

    Get PDF
    Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that several of the properties predicted by the artificial chemistry model hold for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity

    Dose patterns in commercially insured subjects chronically exposed to opioids: a large cohort study in the United States

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little data exist on how opioid doses vary with the length of exposure among chronic opioid users.</p> <p>Methods</p> <p>To characterize the change in the dosage of opioids over time, a retrospective cohort study using the PharMetrics database for the years 1999 through 2008 was conducted. Individuals exposed to opioids in 2000 who had 2 opioid dispensings at least 6 months apart and were opioid naive (did not receive any opioid 6 month before their exposure in 2000) were included. The date of the first dispensing in 2000 was defined as the index date and the dispensing had to be for a strong and full agonist opioid. All opioid doses were converted to oral morphine equivalent doses. Exposure was classified as continuous or intermittent. Mean, median, interquartile range, and 95<sup>th </sup>percentile of opioid dose over 6-month periods, as well as the percentage of subjects who ever received a high or very high opioid dose, were calculated.</p> <p>Results</p> <p>Among the 48,986 subjects, the mean age was 44.5 years and 54.5% were women. Intermittent exposure was observed in 99% of subjects; continuous exposure was observed in 1% of subjects. The mean duration of exposure for the subjects who were continuously exposed to opioids was 477 days. In subjects with no cancer diagnosis who were continuously exposed to opioids, the mean, 25<sup>th</sup>, 50<sup>th</sup>, and 75<sup>th </sup>percentile of dose was stable during the first 2 years of use, but the 95<sup>th </sup>percentile increased. Seven percent of them were exposed to doses of 180 mg or more of morphine at some point.</p> <p>Conclusions</p> <p>Dose escalation is uncommon in subjects with intermittent exposure to opioids. For subjects with continuous exposure to opioids who have cancer, doses rise substantially with time. For those without cancer, doses remain relatively stable for the first 2 years of use, but subsequently increase. Seven percent of subjects with no cancer diagnosis will be exposed to daily doses of 180 mg or more of morphine equivalent at some point.</p

    Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope

    Get PDF
    The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by 40^{40}K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to 40^{40}K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle Physic

    Hereditary cataract in the Bengal cat in Poland

    Get PDF
    Background: This paper reports the significant prevalence of a presumed hereditary cataract in the Bengal cat breed in Poland. The nuclear part of the lens is affected and previous reports from Sweden and France for this type of feline cataract suggest that a recessive mode of inheritance is probably involved. Results: Presumed congenital or neonatal cataract involving the posterior nuclear part of each lens was initially diagnosed in a 12 month old male Bengal cat. As both parents and a sibling were also affected with cataract, a group of 18 related and 11 non-related cats was then subsequently examined. Eight related cats and one non- related cat were found to be similarly affected. A breed survey was then completed using an additional five centres across Poland and a further 190 related cats were examined. A total of 223 cats have been involved in this study, with 75 (33%) being affected with several types of cataract and 67 (30%) being specifically affected with the same or similar nuclear lesions. Eight cats (3.6%) presented with other cataract types and a prominence of the posterior lens suture lines was recorded in 65 cats unaffected with cataract (29%). There were no demonstrable vision problems. Neither age nor coat colour was significantly associated with the nuclear cataract, but the nuclear cataract group had a higher proportion of females than the unaffected group. Pedigree analysis has indicated probable inheritance as a recessive trait. Conclusions: These findings suggest that a presumably inherited nuclear cataract is present in the Bengal cat breed in Poland. It is considered to be either congenital or of very early onset, probably being inherited as a recessive trait. Although the lesion has no noticeable effect on vision, breeders in Poland and worldwide should be aware of the disease and clinical examination of young breeding stock prior to reproduction is advisable

    Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta

    Get PDF
    Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on four families, three of them consanguineous, with an identical phenotype, characterized by significant short stature with brachyolmia and hypoplastic amelogenesis imperfecta (AI) with almost absent enamel. This phenotype was first described in 1996 by Verloes et al. as an autosomal recessive form of brachyolmia associated with AI. Whole-exome sequencing resulted in the identification of recessive hypomorphic mutations including deletion, nonsense and splice mutations, in the LTBP3 gene, which is involved in the TGF-beta signaling pathway. We further investigated gene expression during mouse development and tooth formation. Differentiated ameloblasts synthesizing enamel matrix proteins and odontoblasts expressed the gene. Study of an available knockout mouse model showed that the mutant mice displayed very thin to absent enamel in both incisors and molars, hereby recapitulating the AI phenotype in the human disorder

    Fine-Scale Genetic Structure Arises during Range Expansion of an Invasive Gecko

    Get PDF
    Processes of range expansion are increasingly important in light of current concerns about invasive species and range shifts due to climate change. Theoretical studies suggest that genetic structuring may occur during range expansion. Ephemeral genetic structure can have important evolutionary implications, such as propagating genetic changes along the wave front of expansion, yet few studies have shown evidence of such structure. We tested the hypothesis that genetic structure arises during range expansion in Hemidactylus mabouia, a nocturnal African gecko recently introduced to Florida, USA. Twelve highly variable microsatellite loci were used to screen 418 individuals collected from 43 locations from four sampling sites across Florida, representing a gradient from earlier (∌1990s) to very recent colonization. We found earlier colonized locations had little detectable genetic structure and higher allelic richness than more recently colonized locations. Genetic structuring was pronounced among locations at spatial scales of tens to hundreds of meters near the leading edge of range expansion. Despite the rapid pace of range expansion in this introduced gecko, dispersal is limited among many suitable habitat patches. Fine-scale genetic structure is likely the result of founder effects during colonization of suitable habitat patches. It may be obscured over time and by scale-dependent modes of dispersal. Further studies are needed to determine if such genetic structure affects adaptation and trait evolution in range expansions and range shifts

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore