44 research outputs found

    The hormonal Zeitgeber melatonin: role as a circadian modulator in memory processing

    Get PDF
    The neuroendocrine substance melatonin is a hormone synthesized rhythmically by the pineal gland under the influence of the circadian system and alternating light/dark cycles. Melatonin has been shown to have broad applications, and consequently becoming a molecule of great controversy. Undoubtedly, however, melatonin plays an important role as a time cue for the endogenous circadian system. This review focuses on melatonin as a regulator in the circadian modulation of memory processing. Memory processes (acquisition, consolidation, and retrieval) are modulated by the circadian system. However, the mechanism by which the biological clock is rhythmically influencing cognitive processes remains unknown. We also discuss, how the circadian system by generating cycling melatonin levels can implant information about daytime into memory processing, depicted as day and nighttime differences in acquisition, memory consolidation and/or retrieval

    Ageing or NOT, clock genes are important for memory processes: an interesting hypothesis raising many questions

    Get PDF
    Commentary on: Kondratova et al. Circadian clock proteins control adaptation to novel environment and memory formation. Aging. 2010: this issue

    Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK

    Get PDF
    Memory performance varies over a 24-h day/night cycle. While the detailed underlying mechanisms are yet unknown, recent evidence suggests that in the mouse hippocampus, rhythmic phosphorylation of mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate response element-binding protein (CREB) are central to the circadian (~\ua024\ua0h) regulation of learning and memory. We recently identified the clock protein PERIOD1 (PER1) as a vehicle that translates information encoding time of day to hippocampal plasticity. We here elaborate how PER1 may gate the sensitivity of memory-relevant hippocampal signaling pathways. We found that in wild-type mice (WT), spatial learning triggers CREB phosphorylation only during the daytime, and that this effect depends on the presence of PER1. The time-of-day-dependent induction of CREB phosphorylation can be reproduced pharmacologically in acute hippocampal slices prepared from WT mice, but is absent in preparations made from Per1-knockout (Per1) mice. We showed that the PER1-dependent CREB phosphorylation is regulated downstream of MAPK. Stimulation of WT hippocampal neurons triggered the co-translocation of PER1 and the CREB kinase pP90RSK (pMAPK-activated ribosomal S6\ua0kinase) into the nucleus. In hippocampal neurons from Per1 mice, however, pP90RSK remained perinuclear. A co-immunoprecipitation assay confirmed a high-affinity interaction between PER1 and pP90RSK. Knocking down endogenous PER1 in hippocampal cells inhibited adenylyl cyclase-dependent CREB activation. Taken together, the PER1-dependent modulation of cytoplasmic-to-nuclear signaling in the murine hippocampus provides a molecular explanation for how the circadian system potentially shapes a temporal framework for daytime-dependent memory performance, and adds a novel facet to the versatility of the clock gene protein PER1. (Figure presented.) We provide evidence that the circadian clock gene Period1 (Per1) regulates CREB phosphorylation in the mouse hippocampus, sculpturing time-of-day-dependent memory formation. This molecular mechanism constitutes the functional link between circadian rhythms and learning efficiency. In hippocampal neurons of wild-type mice, pP90RSK translocates into the nucleus upon stimulation with forskolin (left), whereas in Period1-knockout (Per1) mice (right) the kinase is trapped at the nuclear periphery, unable to efficiently phosphorylate nuclear CREB. Consequently, the presence of PER1 in hippocampal neurons is a prerequisite for the time-of-day-dependent phosphorylation of CREB, as it regulates the shuttling of pP90RSK into the nucleus. Representative immunofluorescence images show a temporal difference in phosphorylated cAMP response element-binding protein (pCREB; green color) levels in all regions of the dorsal hippocampus between a wild-type C3H mouse (WT; left) and a Period1-knockout (Per1; right) mouse. Images were taken 2\ua0h after lights on, thus, when fluctuating levels of pCREB peak in WT mouse hippocampus. Insets show a representative hippocampal neuron, in response to activating cAMP signaling, stained for the neuronal marker NeuN (red), the nuclear marker DAPI (blue) and the activated CREB kinase pP90RSK (green). The image was taken 2\ua0h after light onset (at the peak of the endogenous CREB phosphorylation that fluctuates with time of day). Magnification: 100X, inset 400X. Read the Editorial Highlight for this article on page 650. Cover image for this issue: doi: 10.1111/jnc.13332

    Fall prevention intervention technologies: A conceptual framework and survey of the state of the art

    Get PDF
    In recent years, an ever increasing range of technology-based applications have been developed with the goal of assisting in the delivery of more effective and efficient fall prevention interventions. Whilst there have been a number of studies that have surveyed technologies for a particular sub-domain of fall prevention, there is no existing research which surveys the full spectrum of falls prevention interventions and characterises the range of technologies that have augmented this landscape. This study presents a conceptual framework and survey of the state of the art of technology-based fall prevention systems which is derived from a systematic template analysis of studies presented in contemporary research literature. The framework proposes four broad categories of fall prevention intervention system: Pre-fall prevention; Post-fall prevention; Fall injury prevention; Cross-fall prevention. Other categories include, Application type, Technology deployment platform, Information sources, Deployment environment, User interface type, and Collaborative function. After presenting the conceptual framework, a detailed survey of the state of the art is presented as a function of the proposed framework. A number of research challenges emerge as a result of surveying the research literature, which include a need for: new systems that focus on overcoming extrinsic falls risk factors; systems that support the environmental risk assessment process; systems that enable patients and practitioners to develop more collaborative relationships and engage in shared decision making during falls risk assessment and prevention activities. In response to these challenges, recommendations and future research directions are proposed to overcome each respective challenge.The Royal Society, grant Ref: RG13082

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Long-term effects of maternal separation on the responsiveness of the circadian system to melatonin in the diurnal nonhuman primate (Macaca mulatta)

    No full text
    Depression is often linked to early-life adversity and circadian disturbances. Here, we assessed the long-term impact of early-life adversity, particularly preweaning mother-infant separation, on the circadian system's responsiveness to a time giver or synchronizer (Zeitgeber). Mother-reared (MR) and peer-reared (PR) rhesus monkeys were subjected to chronic jet-lag, a forced desynchrony protocol of 22 hr T-cycles [11:11 hr light:dark (LD) cycles] to destabilize the central circadian organization. MR and PR monkeys subjected to the T-cycles showed split locomotor activity rhythms with periods of ~22 hr (entrained) and ~24 hr (free-running), simultaneously. Continuous melatonin treatment in the drinking water (20 μg/mL) gradually increased the amplitude of the entrained rhythm at the expense of the free-running rhythm, reaching complete entrainment by 1 wk. Upon release into constant dim light, a rearing effect on anticipation for both the predicted light onset and food presentation was observed. In MR monkeys, melatonin did not affect the amplitude of anticipatory behavior. Interestingly, however, PR macaques showed light onset and food anticipatory activities in response to melatonin treatment. These results demonstrate for the first time a rearing-dependent effect of maternal separation in macaques, imprinting long-term plastic changes on the circadian system well into late adulthood. These effects could be counteracted by the synchronizer molecule melatonin. We conclude that the melatonergic system is targeted by early-life adversity of maternal separation and that melatonin supplementation ameliorates the negative impact of stress on the circadian system

    The hippocampal autophagic machinery is depressed in the absence of the circadian clock protein PER1 that may lead to vulnerability during cerebral ischemia

    No full text
    Background: Autophagy is an intracellular bulk self-degrading process in which cytoplasmic contents of abnormal proteins and excess or damaged organelles are sequestered into autophagosomes, and degraded upon fusion with lysosomes. Although autophagy is generally considered to be pro-survival, it also functions in cell death processes. We recently reported on the hippocampal, higher vulnerability to cerebral ischemia in mice lacking the circadian clock protein PERIOD1 (PER1), a phenomenon we found to be linked to a PER1-dependent modulation of the expression patterns of apoptotic/autophagic markers. Methods: To exclude the contribution of vascular or glial factors to the innate vulnerability of Per1 knockout-mice (Per1-mice) to cerebral ischemia in vivo, we compared the autophagic machinery between primary hippocampal cultures from wild-type (WT)- and Per1-mice, using the lipophilic macrolide antibiotic, Rapamycin to induce autophagy. Results: Development of autophagy in WT cells involved an increased LC3-II-to-LC3-I ratio (microtubule-associated protein 1 light chain 3) and an overall increase in the level of LC3-II. In addition, immunostaining of LC3 in WT cells revealed the typical transformation of LC3 localization from a diffused staining to a dot- and ring-like pattern. In contrast, Per1-hippocampal cells were resistant to Rapamycin induced alterations of autophagy hallmarks. Conclusion: Our in vitro data suggests that basal activity of autophagy seems to be modulated by PER1, and confirms the in vivo data by showing that the autophagic machinery is depressed in Per1-hippocampal neurons.The implication of both autophagy and circadian dysfunction in the pathogenesis of cerebral ischemia suggests that a functional connection between the two processes may exist

    Clocking in time to gate memory processes : the circadian clock is part of the ins and outs of memory

    No full text
    Learning, memory consolidation, and retrieval are processes known to be modulated by the circadian (circa: about; dies: day) system. The circadian regulation of memory performance is evolutionarily conserved, independent of the type and complexity of the learning paradigm tested, and not specific to crepuscular, nocturnal, or diurnal organisms. In mammals, long-term memory (LTM) formation is tightly coupled to de novo gene expression of plasticity-related proteins and posttranslational modifications and relies on intact cAMP/protein kinase A (PKA)/protein kinase C (PKC)/mitogen-activated protein kinase (MAPK)/cyclic adenosine monophosphate response element-binding protein (CREB) signaling. These memory-essential signaling components cycle rhythmically in the hippocampus across the day and night and are clearly molded by an intricate interplay between the circadian system and memory. Important components of the circadian timing mechanism and its plasticity are members of the Period clock gene family (Per1, Per2). Interestingly, Per1 is rhythmically expressed in mouse hippocampus. Observations suggest important and largely unexplored roles of the clock gene protein PER1 in synaptic plasticity and in the daytime-dependent modulation of learning and memory. Here, we review the latest findings on the role of the clock gene Period 1 (Per1) as a candidate molecular and mechanistic blueprint for gating the daytime dependency of memory processing
    corecore