
A
cc

ep
te

d
 A

rt
ic

le

This article has been accepted for publication and undergone full peer review but has not been 
through the copyediting, typesetting, pagination and proofreading process which may lead to 
differences between this version and the Version of Record. Please cite this article as an 
'Accepted Article', doi: 10.1111/jnc.13689 
This article is protected by copyright. All rights reserved. 

Received Date : 06-Jan-2016 
Revised Date   : 24-May-2016 
Accepted Date : 25-May-2016 
Article type      : Original Article 
 
 
Period1 gates the circadian modulation of memory-relevant signaling in mouse 
hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK 
 
Oliver Rawashdeh1,2,*, Antje Jilg1, Erik Maronde1, Jan Fahrenkrug3, Jörg H. Stehle1,*  
 
1Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie, Goethe-
University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany. 
2School of Biomedical Sciences, University of Queensland, St Lucia, Queensland-4072, 
Australia. 
3Department of Clinical Chemistry, Bispebjerg Hospital, Faculty of Health and Medical 
Sciences, University of Copenhagen, Copenhagen 2400, Denmark. 
 
*Corresponding Authors: 
OR: School of Biomedical Sciences, University of Queensland, St Lucia, Queensland-  

4072, Australia. 
JHS: Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie,  Goethe-

University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany. 
Email: OR: o.rawashdeh@uq.edu.au; JHS: stehle@em.uni-frankfurt.de 
Phone: OR: (+61) 7336-52706; JHS: (+49)(0) 69-63016905  
 
Running Title 
Hippocampal PERIOD1, a local circadian pacemaker  
 
Keywords 
mitogen-activated protein kinase (MAPK), extracellular regulated kinase (ERK), learning, clock,  
long-term memory (LTM) 
 
Abbreviations 
AC, adenylyl cyclase; AHS, acute hippocampal slices; CRE, cyclic AMP-responsive element; 

CREM, cAMP responsive element modulator; DD, constant darkness; ERK, extracellular 

regulated kinase; FSK, forskolin; LD, light-dark; LTM, long-term memory; MSK1, mitogen- and 

stress-activated protein kinase 1; pCREB, phosphorylated cyclic-AMP response element 

binding-protein; PER1, PERIOD1; Per1-/-, Per1 knockout; PHC, primary hippocampal cultures; 

PKA, protein kinase A; PKC, protein kinase C; pMAPK, phosphorylated mitogen-activated 

protein kinase; pP90RSK, pMAPK activated ribosomal S6 kinase; s.e.m., standard error of the 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

mean; Sp-cAMPS, Sp-diastereomer of cyclic AMP; STM, short-term memory; ZT, zeitgeber 
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Abstract  

Memory performance varies over a 24h day/night cycle. While the detailed underlying 

mechanisms are yet unknown, recent evidence suggests that in the mouse hippocampus, 

rhythmic phosphorylation of mitogen-activated protein kinase (MAPK) and cyclic adenosine 

monophosphate response element-binding protein (CREB) are central to the circadian (~24 h) 

regulation of learning and memory. We recently identified the clock protein PERIOD1 (PER1) 

as a vehicle that translates information encoding time-of-day to hippocampal plasticity. We here 

elaborate how PER1 may gate the sensitivity of memory-relevant hippocampal signaling 

pathways. We found that in wildtype mice (WT), spatial learning triggers CREB phosphorylation 

only during the daytime, and that this effect depends on the presence of PER1. The time-of-day-

dependent induction of CREB phosphorylation can be reproduced pharmacologically in acute 

hippocampal slices prepared from WT mice, but is absent in preparations made from Per1-

knockout mice. We showed that the PER1-dependent CREB phosphorylation is regulated 

downstream of MAPK. Stimulation of WT hippocampal neurons triggered co-translocation of 

PER1 and the CREB kinase pP90RSK (pMAPK activated ribosomal S6 kinase) into the nucleus. 

In hippocampal neurons from Per1-/--mice, however, pP90RSK remained perinuclear. A co-

immunoprecipitation assay confirmed a high affinity interaction between PER1 and pP90RSK. 

Knocking down endogenous PER1 in hippocampal cells inhibited adenylyl cyclase-dependent 

CREB activation. Taken together, the PER1-dependent modulation of cytoplasmic-to-nuclear 

signaling in the murine hippocampus provides a molecular explanation for how the circadian 
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system potentially shapes a temporal framework for memory performance dependent on time-of-

day, and adds a novel facet to the versatility of the clock gene protein PER1.  

 
Introduction 

In contrast to short-term memory (STM), long-term memory (LTM), involves protein synthesis 

and is modulated by the circadian (~24 h) system across species (Gerstner et al. 2009). This 

temporal modulation of LTM processing is contingent upon the chronobiological regulation of 

learning-dependent signaling events. Studies in the sea slug Aplysia show that training at 

different day and night phases induces a characteristic molecular signature within neurons 

involved in the learning paradigms (Lyons et al. 2006).  Furthermore, post-translational 

modifications of molecular signals that are essential for LTM formation (Bourtchuladze et al. 

1994, Dash et al. 1990, Davis & Squire 1984, Tully et al. 1994) oscillate with a circadian rhythm 

in brain centers involved in memory processing (Eckel-Mahan et al. 2008, Lyons et al. 2006, 

Rawashdeh et al. 2014). Although such findings implicate the presence of an intricate multi-

systemic interplay between the circadian clock and memory formation, the mechanistic link 

between the two systems remains obscure. Potential candidates are the circadian clockwork 

protein PERIOD1 (PER1) and phosphorylated CREB (pCREB), a molecular marker of memory 

processing in the hippocampus (Mizuno et al. 2002, Kandel 2001), as these two elements are 

common constituents to both the circadian and the memory system (Lee et al. 2010, Frank & 

Greenberg 1994, Motzkus et al. 2000).  

 

Canonical circadian clock genes are not only essential to maintain the accuracy and plasticity of 

biological clocks (Albrecht et al. 1997, Brown et al. 2005, Shigeyoshi et al. 1997, Travnickova-

Bendova et al. 2002), but also affect behavior (Jilg et al. 2010, Rawashdeh et al. 2014). In mice, 
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PER influences traced fear conditioning (Wang et al. 2009), spatial memory performance 

(Rawashdeh et al. 2014), social behavior (Bechstein et al. 2014), and behavioral sensitization 

associated with drugs of addiction (Abarca et al. 2002, Andretic et al. 1999). This suggests that 

elements of a circadian pacemaker are likely also integral to circadian modulation of LTM 

processing. Like PER1, pCREB plays a central role in LTM consolidation (Bourtchuladze et al. 

1994), and transduces “clock-input” signals (Belvin et al. 1999, Obrietan et al. 1999). Expression 

of the Per1 gene depends on pCREB binding to the cAMP-response elements (CRE) promoter 

region (Zmrzljak et al. 2013, Travnickova-Bendova et al. 2002, Hida et al. 2000, Motzkus et al. 

2000) and Per1 gene expression is maximally affected in mice deficient for the CREB-related 

transcription factor cAMP responsive element modulator (CREM) (Zmrzljak et al. 2013). 

Likewise, in Per1-knockout (Per1-/-) mice, hippocampal pCREB dynamics are significantly 

altered (Rawashdeh et al. 2014).  

 

Expanding on our previous finding that PER1 accounts for daily variations in spatial memory 

performance (Rawashdeh et al. 2014), our hypothesis for the underlying mechanism is that PER1 

modulates hippocampus-dependent memory by gating the sensitivity of incoming signals.  

 

Using ex vivo and in vitro techniques, we assessed communication between PER1 and CREB in 

the mouse hippocampus. This is the first demonstration that the tight coupling of CREB 

activation to Per1 gene expression is in fact bidirectional, since PER1 effectively influences the 

sensitivity of memory-relevant pathways that feed back to CREB phosphorylation in the 

hippocampus. On a mechanistic level, we show that PER1-dependent signaling affects the 

trafficking of phosphorylated MAPK activated ribosomal S6 kinase (pP90RSK) into the nucleus, 
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where it modulates the phosphorylation of its target CREB. This mechanism thus represents a 

functional link to encode time-of-day and translate it into the circadian modulation of LTM. 

 

Material and Methods  

Animals and tissue sampling  

All animal experiments were approved by the local veterinary office (permission#: V54-

19c20/15-FU/1045) and the European Communities Council Directive (89/609/EEC). Male 

Per1-/--mice (kindly provided by Dr. D.R. Weaver, University of Massachusetts Medical School, 

Worchester, USA; bred on a C3H/HeN background [von Gall et al. 2002]) and wild-type 

controls, aged 8-15 weeks were bred in-house for use in this study. Animals were kept for at 

least 2 weeks prior to experiments under a standard light-dark (LD) cycle, with 12 h light 

(daytime: 250 lux; onset (“ON”) defined as Zeitgeber Time [ZT] 0) and 12 h darkness 

(nighttime: dim red light <10 lux, >680 nm), or under constant darkness (DD) (dim red light <10 

lux, >680 nm), at constant room temperature and with food and water available ad libitum. 

Animals were anesthetized and sacrificed for removal of the hippocampus at indicated time 

points (n=3-6 animals per time point and experiment unless stated otherwise).  

 

Behavioral analysis 

To assess spatial memory performance in mice we used an 8-arm radial arm maze as described 

before (Rawashdeh et al. 2014, Jilg et al. 2010). In brief, animals received daily adjusted meal 

sizes to maintain their body weights at 85-90% of their pre-train values for the duration of the 

experiment, habituated for two days to the maze and the reward, and trained on the third day 

(single trial). A trial was terminated once all rewards (dry breadcrumbs; Brandt Backwaren 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Vertriebs GmbH, Hagen/Germany) were consumed, or 15 min after the animalentered the maze. 

An “entry” into an arm was recorded when all four paws were within the arm. An “error” was 

recorded if an animal re-entered a previously visited arm. Animals were placed in the 8-arm 

radial arm maze at ZT 02 or ZT 14, and sacrificed either 30 min or 6 h post training. Hippocampi 

were removed and stored at -80°C until further use. Importantly, to differentiate between 

training-induced changes in pCREB levels and cycling endogenous pCREB, we included control 

(naïve) groups of mice for both time points (ZT 02 or ZT 14). Naïve mice were handled 

identically to the experimental group, without, however, the training session. 

 

Signaling analyses using acute hippocampal slices 

Acute hippocampal slices (AHS) were prepared as described for electrophysiological studies 

(Selbach et al. 2004) at ZT 02, 06, 10, 14, 18 and 22. In brief, hippocampi were cut into 350 µm 

thick transverse sections. Hippocampal slices from a given animal were randomly assigned to 

incubation chambers. One set of slices served as control, while other sets were stimulated with 

forskolin (50 μM; Merck KG, Germany) or Sp-cAMPS (300 μM; BioLog Life Science Institute, 

Bremen, Germany), respectively, for 1 h. To study differences between genotypes with regard to 

the pCREB and pMAPK induction dynamics in response to forskolin (50 μM) or phorbol-12-

myristate-13-acetate (PMA;1 μM), hippocampal slices were stimulated at the time, when 

endogenous pCREB levels were shown to be maximal in WT mice (ZT 10; (Rawashdeh et al. 

2014) for 30 min, 1 h, or 2 hrs, respectively. Another set of slices prepared from WT mice was 

pre-incubated with the MEK1/2 inhibitor U0126 (10 μM) (Cell Signaling Technology Inc, 

Beverly, USA) for 30 minutes, followed by the addition of forskolin (50 µM) for 1 h. At the end 
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of the experiments, slices were transferred into 500 μl of ice-cold sample buffer (Invitrogen, 

Carlsbad, USA), frozen and stored at -80°C until further processing.  

 

Primary hippocampal cell cultures  

Primary hippocampal cultures (PHC) were prepared as described (Benz et al. 2010).WT and 

Per1-/--mice were sacrificed at postnatal day 3, hippocampi were removed and kept in DMEM at 

4°C. Hippocampi were triturated in a papain-rich medium at 37°C and cells were seeded onto 

glass coverslips coated with poly-l-lysine (Sigma-Aldrich, Germany), containing Minimal 

Essential Medium (Invitrogen, Germany), supplemented with 1% (vol/vol) penicillin-

streptomycin (Invitrogen, Germany), 1% GlutaMax (vol/vol) (Invitrogen, Germany), 1% glucose 

(vol/vol) (Sigma-Aldrich, Germany), 10% fetal bovine serum (vol/vol), and B-27 (Invitrogen, 

Germany). After exchange for Neurobasal-A medium (Invitrogen, Germany) supplemented with 

1% (vol/vol) penicillin–streptomycin mix, 1% GlutaMax (vol/vol) and B-27 supplement 

(Invitrogen, Germany), the cells were maintained for 14 days under atmospheric conditions (95% 

CO2 and 5% O2) at 37°C prior to further experimentation. PHC from both, WT and Per1-/--mice, 

were treated for various time periods (0 to 180 minutes) with forskolin (10 µM), with or without 

the addition of the inhibitor of pP90RSK, BRD-7389 (10µM; 1-[(2-Phenylethyl)amino]-3H-

naphto[1,2,3-de]quinoline-2,7-dione, TOCRIS Bioscience, Wiesbaden, Germany), or U0126 

(Cell Signaling Technology, Leiden, Netherlands), dissolved in DMSO. Experiments were 

terminated by transferring culture plates on ice, removing the medium from the cells, and adding 

50 µl of sample buffer (Invitrogen, Germany). The samples were sonicated and heated to 70°C 

for 10 min prior to immunochemical analyses.  
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Immunochemistry  

Immunoblotting  

Western blots of hippocampal extracts were performed with slight modifications to previous 

protocols (Maronde et al. 1999a). Hippocampi were sonicated in NuPAGE® LDS sample buffer 

(Invitrogen, Carlsbad, USA) (10% Glycerol, 141 mM Tris Base, 106 mM Tris HCl, 2% LDS, 

0.51 mM EDTA, 0.22 mM SERVA® Blue G250, 0.175 mM Phenol Red, 100 mM DTT, pH 8.5) 

and proteins were denatured by heating. Proteins were separated using NuPAGE® Novex 4-12% 

Bis-Tris Gels according to the manufacturer’s instructions (Invitrogen, Carlsbad, USA), and 

transferred onto a PVDF membrane using the iBlotTM Dry Blotting System (Invitrogen, 

Carlsbad, USA). Prior to incubation with primary antibodies (Supplemental Table 1), membranes 

were blocked with RotiBlock® (Roth, Karlsruhe, Germany) for 1 h at room temperature. 

Subsequently, membranes were incubated with secondary antibodies (Table 1) for 1 h at room 

temperature. Signals were detected using Immobilon Western Chemoluminiscent HRP Substrate 

(Millipore, Billerica, USA), digitalized using the ChemiDoc XRS System (BioRad, München, 

Germany) and analyzed using a luminescence system (Quantity One, ChemiDoc XRS, Bio-Rad, 

Hercules, CA, USA). For experiments investigating the effects of forskolin on hippocampal 

tissue across a 24h day/night cycle, only experimental samples for a given time point and their 

respective control were loaded onto a single gel. Forskolin-induced CREB phosphorylation was 

quantified for a single time point rather than across different membranes, and for comparability, 

expressed as percent change of pCREB levels. The optical intensity of all target signals on any 

given Western blot was always normalized to the optical intensity of the actin signal on the same 

blot. The normalized signal intensities were then expressed as relative signal intensities (rel. 

O.D.), or as percent (%) change. 
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Immunofluorescence 

Forskolin-stimulated (1 h) hippocampal primary cell cultures were fixed post treatment with 

paraformaldehyde 4% (wt/vol) in 0.1 M phosphate buffer. Immunofluorescence staining was 

performed as described (Benz et al. 2010). In brief, fixed cells were washed with phosphate-

buffered saline (PBS) and blocked at room temperature for 45 min with 3% bovine serum 

albumin (BSA; Sigma-Aldrich, Taufkirchen, Germany) in 0.1 M PBS. Cells were incubated 

overnight at 4°C with primary antibodies dissolved in PBS containing 1% (wt/vol) BSA (Sigma-

Aldrich, Taufkirchen, Germany). Cells were washed with PBS and incubated with fluorochrome-

coupled secondary antibodies in PBS for 1 h. Coverslips were washed three times with PBS and 

mounted on slides using Vectashield mounting medium (Vector Laboratories, Inc. Burlingame, 

CA, USA) containing DAPI (4',6-diamidino-2-phenylindole) to stain nuclei. Fluorescent images 

were acquired using an Axio-Cam digital camera mounted on a Zeiss microscope (Carl Zeiss, 

Oberkochen, Germany) with a 20x objective lens. Fluorescent images were digitally merged to 

superimpose the different signals. ImageJ was used to quantify the nuclear and/or cytoplasmic 

fluorescence signal as described previously (Burgess et al. 2010).  

 

Co-Immunoprecipitation 

To assess whether PER1 interacts with pP90RSK, we used a co-immunoprecipitation (Co-IP) 

approach, following manufacturer’s instructions (PierceTM Crosslink Magnetic IP/Co-IP Kit, 

Pierce Biotechnology, Rockford, Il, USA). Hippocampi, isolated at ZT 23 (peak of PER1 protein 

levels; Rawashdeh et al., 2014), were homogenized in 500 µl lysis buffer. The supernatant was 

incubated with magnetic beads covalently bound to the rabbit anti-PER1 antiserum (Fahrenkrug 

et al., 2006), or with the beads only, washed and eluted. Three eluates (“unbound”, eluate 1 and 
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eluate 2) were mixed with 2x sample buffer, sonified, heated to 70°C for 10 min, chilled on ice, 

loaded onto a 12% NuPage gel with MES running buffer (both from Invitrogen, Waltham, MA, 

USA) and separated for 60 minutes. The gel was transferred to PVDF membrane using an iBlot 

(Invitrogen, Waltham, MA, USA). After blotting and washing, the membrane was blocked for 

one hour in 1x Rotiblock (Roth, Karlsruhe, Germany) at room temperature, incubated with rabbit 

anti-pP90RSK antisera (1:1000; Cell Signaling, Bad Nauheim, Germany). After washing and 

incubation with a secondary antibody (1:50000; goat anti-rabbit-HRP, Santa Cruz) the signals 

were detected using a Vilbert Fusion CCD camera (PeqLab, Erlangen, Germany). 

 

CRE-Luc reporter assay  

For transient transfection experiments, HT22 hippocampal neuronal cells (kindly provided by 

Dr. David Schubert, The Salk Institute for Biological Sciences, La Jolla, CA, USA) were seeded 

on 6-well plates with 200,000 cells per well and incubated overnight in DMEM (Dulbecco's 

Modified Eagle's Medium) containing 10% fetal bovine serum (vol/vol), 1% Pen/Strep (vol/vol), 

and 1% GlutaMax (vol/vol), as described (Benz et al. 2010). On the following day cells were 

transferred into DMEM without serum and transfected with a CRE-Luc reporter plasmid 

(Promega, USA), and either an equal mix of four Per1-directed short hairpin RNAs (sh-Per1) 

(OriGene Technologies, Inc., USA), or scrambled RNA, using the FuGene HD kit (Promega, 

Mannheim, Germany). Cells were re-seeded at equal numbers onto a 96-well plate in Leibovitz 

L15-medium, containing 1 mM luciferin and 1% fetal calf serum (FCS). HT22 cells were 

stimulated the next day with forskolin (10 μM) or DMSO (1%). Luminescence was measured 

(96-well luminometer, Centro LNB, Berthold Technologies GMBH & Co. KG, Wildbad 

Germany) at 1 h intervals for 0.1 seconds per well, and is expressed as relative light units (RLU). 
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In addition, Per1 mRNA was quantified using real-time PCR, as described previously (Jilg et al. 

2010).  

 

Statistical analyses 

All statistical analyses were performed using GraphPad software 5.0 and 6.0 (La Jolla, 

California, USA). Group means between the various time points, and within each genotype, were 

compared by 1-way analysis of variance (ANOVA, P<0.05 as criterion of significance) followed 

by Holm-Sidak’s and Bonferroni posthoc multiple comparison tests. Potential differences and 

interaction terms between genotype and treatment conditions were detected by a two-way 

ANOVA, and a Student’s t-test for pairwise comparison of these variables (P<0.05 as criterion 

of significance). Data are presented as mean + standard error of the mean (s.e.m.). For all in vitro 

primary culture experiments, the sample size “n” refers to the total number of independent 

experimental repeats. 

 

Results 

Time-of-day-dependent differences in spatial-learning-induced CREB phosphorylation is 

dependent on PERIOD1 

Among the various hippocampal rhythmic-signaling molecules we identified so far, CREB is the 

one that is most significantly influenced by the absence of PER1 (Suppl. Fig. 1; Rawashdeh et al. 

2014). To confirm the role of PER1-dependent CREB phosphorylation in memory processing, 

we examined whether PER1 regulates temporal differences in learning-induced CREB activation 

as a functional gateway to daytime-dependent spatial learning efficiency. After one day of spatial 

memory training, hippocampal CREB phosphorylation exhibited rapid and persistent induction 
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dynamics that were limited to WT mice and daytime (ZT02) only (ZT02: trained vs. naïve; WT-

mice [0.5 h and 6 h], P<0.05, Per1-/--mice [0.5 h and 6 h], P>0.4). Interestingly, nighttime 

training (ZT14) induced a significant decline in pCREB levels by 6 h post-training as compared 

to the naïve control mice in both genotypes (ZT 14: trained vs. naïve; WT-mice and Per1-/--mice 

[0.5 h], P>0.3 and for [6 h], P<0.05, t-test; Fig. 1A, B).  

  

PERIOD1 modulates time-of-day-dependent inducibility of the AC-PKA-CREB signaling 

pathway 

Having confirmed the essential role of PER1 in diurnal learning-induced CREB activation (Fig. 

1A, B), we aimed to identify those memory-relevant pathways that (a) signal to trigger CREB 

phosphorylation in the hippocampus, (b) are temporally modulated, and (c) are influenced by 

PER1. To that effect, we used pathway-specific stimulants to target defined molecular cascades 

known to signal to CREB in acute hippocampal slices (AHS). To factor in time as a variable into 

our in vitro system, AHS were prepared at 4 h intervals (ZT 02, 06, 10, 14, 18 or 22) from WT 

and Per1-/--mice kept under a 12:12 h LD cycle. Only the forskolin stimulated AHS prepared 

from WT-mice during daytime (ZT 02, 06 and 10) showed pronounced CREB phosphorylation 

in response to specific activation of adenylyl cyclase (AC)/protein kinase A (PKA)-dependent 

signaling pathways (WT-AHS; ± FSK [ZT 02-10], P<0.05, and [ZT 14-22], P>0.67, t test, Fig. 

1C). The temporal restriction of CREB phosphorylation to daytime in in vitro AHS was thus 

congruent with in vivo observations in the WT mice that had undergone hippocampal spatial 

memory training during the daytime. In line with our hypothesis, CREB phosphorylation could 

not be induced in AHS prepared from Per1-/--mice at any of the assessed time points (Per1-/--

AHS; ± FSK [ZT02-22], P>0.1, t test, Fig. 1C), even after prolonged stimulation (120min) with 
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forskolin at ZT10 (pCREB in Per1-/--AHS; ± FSK, P>0.05 for all time points tested, t test, Fig. 

1D).  

 

Silencing Per1 inhibits CREB-dependent gene expression 

To confirm that the clock protein PER1 is directly involved in the intracellular regulation of 

CREB activation, we knocked down endogenous PER1 expression in mouse hippocampal HT22 

cells, transiently transfected with a luciferase reporter for CREB activity (CRE-Luc). Knocking 

down endogenous PER1 with small hairpin Per1-RNA (sh-Per1) significantly reduced the 

forskolin-induced CRE-Luc signal as compared to the controls treated with scrambled RNA of 

either vehicle or forskolin-stimulated cells (P<0.05, 2-way ANOVA, Fig. 2). These data confirm 

PER1 as a modulator of cAMP-dependent CREB activation.  

 

PERIOD1 regulates cAMP-mediated CREB activation downstream of MAPK/ERK 

cAMP signaling in the hippocampus can activate CREB either directly via PKA, or indirectly 

through more complex cascades involving PKA-Ras-Raf-MAPK/ERK signaling (Gonzalez & 

Montminy 1989, Impey et al. 1998). This constitutes an array of possible targets for PER1 to 

exert its modulatory effects on signaling to CREB phosphorylation. Inhibiting the PKA-Ras-Raf-

MAPK/ERK pathway at the level of the dominant ERK kinase MEK1/2 with its antagonist 

U0126 (Thomas & Huganir 2004) completely blocked forskolin-induced MAPK/ERK and 

CREB phosphorylation in WT AHS prepared during daytime (Fig. 3A, B). This indicates that 

forskolin triggers CREB phosphorylation predominantly via the indirect PKA-Ras-Raf-

MAPK/ERK pathway.  
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We next assessed if PER1 regulates this pathway upstream or downstream of MAPK/ERK. 

Similar to stimulation by forskolin, the direct downstream activation of PKA by Sp-cAMPS led 

to phosphorylation of MAPK/ERK and CREB in WT AHS (Fig. 3A, C), whereas U0126 

inhibited Sp-cAMPS-induced MAPK/ERK activation (Fig. 3A-C). Importantly, in the absence of 

PER1, Sp-cAMPS also phosphorylates MAPK/ERK, in line with observations in WT AHS (Fig. 

3A, C). Since PER1 regulates signaling to CREB downstream of MAPK/ERK, activation of the 

alternative protein kinase C (PKC) signaling pathway (PKC-MAPK/ERK-CREB) is also 

expected to be affected by the lack of PER1. Indeed, stimulating PKC with PMA in AHS from 

Per1-/--mice failed to induce CREB phosphorylation despite MAPK/ERK activation (Fig. 3D, E), 

further supporting that PER1 enhances signaling downstream of MAPK/ERK (Fig. 3F).  

 

It is not surprising that U0126 abolished even baseline ERK phosphorylation in WT 

hippocampal slice homogenates (Fig. 3A; compare lane 1 vs. lanes 3-6). Notably, in 

hippocampal neurons, the PKA signaling pathway coupled to CREB phosphorylation is ERK1/2-

dependent (Eckel-Mahan et al. 2008). By contrast, U0126 altered basal levels of CREB 

phosphorylation only marginally (Fig. 1B, lane 1). This is plausible since various kinases may 

activate CREB, and thus contribute to its basal phosphorylation level. The observed differences 

in the induction dynamics of pERK and pCREB across stimulants like PKC and PMA (Fig. 3D, 

E), are likely linked to differences in target localization, drug permeability, and activation 

dynamics among other kinetics.  
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PERIOD1 modulates the induction of CREB phosphorylation by targeting pP90RSK 

To further narrow down the point at which PER1 affects CREB activation, we focused on the 

downstream targets of MAPK/ERK, specifically on the CREB kinases MSK-1 (mitogen- and 

stress-activated protein kinase 1) and pP90RSK (Sindreu et al. 2007, Xing et al. 1996), using 

primary hippocampal cultures (PHC). PHC are a simplified experimental system suitable to 

investigate signaling pathways that are relevant for memory consolidation, particularly the 

cAMP/PKA/CREB pathway (Deisseroth et al. 1996, Deisseroth et al. 1998). 

 

The cAMP-dependent molecular cascade that signals to CREB phosphorylation in response to 

forskolin is the same across the different in vitro models. Furthermore, while forskolin stimulates 

ERK phosphorylation in AHS and PHC prepared from PER1-/--mice, there is no induction of 

CREB phosphorylation in either in vitro system (compare Fig. 4A, C [PHC] vs. Figs. 1D, 3A 

[AHS]). At the cellular level of individual hippocampal neurons, the modulation of the 

PKA/PKC-MAPK/ERK pathway by PER1 happens downstream of pMAPK/pERK, which is 

remarkably similar to the observation in AHS (Fig. 3A-C). Notably, phosphorylation of 

MAPK/ERK can be induced via AC/PKA signaling in both, WT and Per1-/--mice AHS (Fig. 4A, 

B). We furthermore demonstrated that PER1-dependent CREB phosphorylation is intrinsic to 

hippocampal neurons (Fig. 4C, D), which is in line with the data obtained using AHS.  

 

In addition to CREB phosphorylation, forskolin also induces phosphorylation of P90RSK 

(pP90RSK) in a MAPK/ERK-dependent manner in WT PHC (pP90RSK; FSK ± U0126 [0min – 

30min]; P<0.0001, 2-way ANOVA, Fig. 5A). To confirm, whether pP90RSK mediates CREB 

phosphorylation, we inhibited P90RSK prior to forskolin stimulation in WT PHC. The RSK 
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inhibitor BRD-7389 antagonized the effect of forskolin on CREB phosphorylation (pCREB; 

FSK ± BRD-7389 [0min – 30min]; P<0.0001, 2-way ANOVA, Fig. 5B, C). The CREB kinase 

MSK1 (mitogen- and stress-activated protein kinase 1), a direct target of pMAPK/pERK, was 

activated by forskolin in parallel with pP90RSK (forskolin vs. vehicle [15 min – 60 min]; 

P<0.05, ANOVA, and forskolin+BRD-7389 [30 min – 60 min]; P<0.05, ANOVA and Holm-

Sidak’s multiple comparison test for posthoc analysis, Fig. 5D, E). Importantly, forskolin 

stimulated the pMAPK/pERK-dependent translocation and nuclear phosphorylation of MSK1 

even in the absence of PER1 (MSK1; FSK ± U0126 [15min – 60min]; P<0.0001, 2-way 

ANOVA, Fig. 5F). This observation confirms our earlier conclusion that pMAPK/pERK is not 

targeted by PER1, and suggests that PER1-dependent temporal regulation of CREB 

phosphorylation does not involve MSK1 in hippocampal neurons. The broad spectrum across 

which the effects associated with the lack of Per1 expression can be observed, reconfirms the 

suitability of PHC to investigate PER1-dependent signaling, and also shows that under artificial 

in vitro conditions, PER1 remains linked to dynamics in CREB phosphorylation.  

 

PERIOD1 modulates CREB activation by regulating the nucleo-cytoplasmic shuttling of 

pP90RSK 

P90RSK is phosphorylated and activated by pMAPK/pERK in the cytoplasm (Chang & Karin 

2001, Dalby et al. 1998); it thereafter translocates to the nucleus (Frodin & Gammeltoft 1999, 

Gao et al. 2012) to target CREB phosphorylation (Impey et al. 1998). Thus far, our results imply 

that PER1 regulates CREB phosphorylation by modulating either the cytoplasmic activation of 

P90RSK or its nuclear translocation. Immunofluorescence analyses of the intracellular 

distribution of pP90RSK following forskolin stimulation show that cytoplasmic activation of 
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P90RSK does not rely on the presence of PER1. Surprisingly, however, and in contrast to 

MSK1, pP90RSK remains perinuclear in forskolin-stimulated PHC prepared from Per1-/--mice 

(Fig. 6A). Additionally, we show for the first time that in PHC from WT mice, endogenous 

PER1 accumulates in the nucleus in response to AC/cAMP signaling, with kinetics similar to 

that of P90RSK activation and translocation, and importantly also in parallel to CREB 

phosphorylation (PER1; ± FSK [0min – 30min]; P<0.0001, ANOVA, and P<0.001, Holm-

Sidak’s multiple comparison test for posthoc analysis; pCREB; ± FSK [0min – 30min]; 

P<0.0001, ANOVA and P<0.05, Holm-Sidak’s multiple comparison test for posthoc analysis, 

Fig. 6B).  

To confirm the suggested interaction of PER1 with pP90RSK, we tested whether 

immunoprecipitating PER1 would co-precipitate pP90RSK. In Western blots using antisera 

against pP90RSK (Fig. 6C), both, the crude extract of hippocampal lysate (lanes 2) and the 

PER1-bound eluted fraction (lanes 3) yielded bands at the expected molecular weight of 90 kDa 

(Fig. 6C, indicated by arrow). The 90 kDa signal is absent in both washouts, in supernatants 

incubated with beads only (lanes 1), or with anti-Per1 antibody bound-beads (lanes 4), 

respectively.  

 

Discussion 

In mouse hippocampus, circadian rhythmicity in the basal phosphorylation of essential memory-

related molecules such as pCREB and pMAPK/pERK, as well as in the expression of the clock 

gene protein PER1, are well documented (Rawashdeh et al. 2014, Eckel-Mahan et al. 2008, Jilg 

et al. 2010). The absence of PER1 impairs spatial memory and hippocampal rhythms in memory-

relevant molecules including epigenetic modifications (Rawashdeh et al. 2014). Collectively, 
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this implicates an interaction and interdependence of systemically common signaling molecules 

like CREB and MAPK/ERK with the clockwork component PER1. Our study demonstrates that 

the time-of-day and learning-dependent activation of MAPK/ERK and CREB signaling relies on 

the presence of PER1 in hippocampal neurons. Additionally, by pinpointing the modulatory 

effect of PER1 on pCREB to the nuclear translocation of the CREB kinase pP90RSK, we 

provide a key to understanding how learning-induced hippocampal memory consolidation may 

vary rhythmically between day- and nighttime. 

 

Pharmacological stimulation of the cAMP/PKA-signaling pathways ex vivo showed an induction 

of MAPK/ERK and CREB that was restricted to daytime and early nighttime. Behavioral 

training-induced LTM and ex vivo electrophysiological stimulation-induced plasticity depend on 

the activation of PKA, PKC and Ca2+-dependent pathways, all of which converge to 

phosphorylate MAPK/ERK and CREB (Roberson et al. 1999, Bonini et al. 2007, 

Bourtchouladze et al. 1998, Davis et al. 2000, Sweatt 2004, Xing et al. 1996). Importantly, the 

responsiveness of the PER1-dependent cAMP/PKA-signaling pathway to behavioral and 

pharmacological stimuli suggests that PER1 functions in temporally structuring memory 

processing. The link between CREB phosphorylation and PER1 is further strengthened by 

observations that elevated hippocampal sensitivity during the daytime temporally coincides with 

the phase of endogenously high PER1 expression (Jilg et al. 2010). 

 

The preparation of acute brain slices can trigger a transient phosphorylation and 

dephosphorylation of memory-relevant signaling molecules such as calcium/calmodulin-

dependent kinase II (CaMKII) and ERK (Ho et al. 2004). Therefore, the interpretation of ex vivo 
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dynamics reported here bears the caveat that results might be subject to a systematic error if 

phosphorylation levels were distorted by injury during slice preparation. However, this would 

not affect the general message of our study, namely that the hippocampus responds to stimuli in 

a time-of-day-dependent manner. This is even more so as in the study by Ho et al. (2004), 

changes in ERK activation returned to baseline within 30-60 minutes, thus within a time frame 

well before our hippocampal slices were pharmacologically stimulated. Even if injury caused a 

substantial ERK phosphorylation, the amount of unphosphorylated ERK molecules left to be 

activated seems to be sufficient to allow detection of a rhythm in ERK induction that is not only 

very robust, but also exhibits a phosphorylation profile similar to that of CREB.  

 

The preserved responsiveness of MAPK/ERK to PKA- and PKC-signaling in the absence of 

PER1 suggests that the post-translational modification-dependent STM (Sweatt 2004) likely 

remained intact. Our study verifies that signaling upstream of MAPK/ERK is unaltered in the 

absence of PER1. It is intriguing and mechanistically plausible that a PER1-dependent temporal 

gate for memory processing, located downstream of MAPK/ERK, may specifically impact the 

gene-expression-dependent LTM (Gerstner et al. 2009, Lyons et al. 2005, Rawashdeh et al. 

2007).  

 

The use of constitutive Per1-/--mice makes it difficult to discriminate hippocampus-specific 

PER1 signaling from its effects on remote brain structures that are synaptically coupled to this 

limbic component. However, the data presented in this study strongly suggest that signaling to 

CREB in hippocampal neurons is primarily and locally regulated by PER1. Behavioral 

deficiencies in spatial memory of Per1-/--mice (Rawashdeh et al., 2014) are associated with 
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impaired working memory-induced CREB activation in the hippocampus (this study). Notably, 

Per1-/--mice do learn and form long-term spatial memory but the change in behavior is less 

dramatic across repetitive training sessions as compared to WT-mice (Rawashdeh et al. 2014). 

This difference in learning efficiency likely reflects the impairment of signaling to pCREB, as 

detected here in Per1-/--mice.  

 

Furthermore, we confirmed the regulatory role of PER1 in hippocampal signaling by 

demonstrating that knocking down Per1 expression in vitro significantly inhibits forskolin-

induced pCREB-dependent gene expression. Additional support for PER1 as a local 

hippocampal modulator of memory-relevant signaling pathways directed at pCREB is provided 

as we and others have shown earlier that the SCN appears functionally intact in Per1-/--mice (Bae 

et al. 2001, Jilg et al. 2010, Liu et al. 2007), yet hippocampal rhythms in clock gene expression 

and epigenetic modifications are altered in the absence of PER1 (Jilg et al. 2010, Rawashdeh et 

al. 2014), and learning and memory is affected in Per1-/--mice (Jilg et al. 2010, Rawashdeh et al. 

2014). Thus, our studies establish that PER1 endows a local Zeitgeber function in mouse 

hippocampus. 

 

CREB plays an important role in SCN clock physiology, particularly in mediating external and 

internal entrainment cues to the master circadian clock (Lee et al. 2010). Beyond the well-known 

pCREB-dependent Per1 gene expression (Naruse et al. 2004, Tischkau et al. 2003, von Gall et 

al. 2001), we here provide novel molecular evidence for a bidirectional interaction between these 

two molecules, in which PER1 feeds back to signaling pathways coupled to CREB 

phosphorylation, similar to the autoregulatory feedback loop described for mammalian circadian 
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clockwork models (Shearman et al. 2000). Furthermore, this represents the first direct interactive 

link between the circadian clock and signaling relevant to memory processing in the 

hippocampus. Our observations on the bidirectional interaction between CREB and PER1 in the 

mouse hippocampus may also apply to the SCN, which would imply a novel role for Per1 

beyond the well-established function as an immediate-early gene in SCN photic-transduction 

(Albrecht et al. 1997, Shearman et al. 2000). Studies to test this interesting hypothesis are 

currently underway. 

 

The impairment of hippocampal PKA and PKC signaling to CREB phosphorylation in Per1-/--

mice hippocampus cannot be generalized. In the pineal gland for instance, a model system for 

cAMP signaling (Stehle et al. 1993, Maronde et al. 1999a), we found that PKA activation readily 

phosphorylates CREB also in Per1-/--mice (data not shown). Notably, in contrast to our findings 

in the hippocampus, ex vivo forskolin-stimulated pineal cAMP signaling is not influenced by 

PER1, since pineal PKA is directly coupled to pCREB, and not indirectly linked via the PKA-

Ras-Raf-MAPK/ERK pathway (Maronde et al. 1999b, Maronde et al. 1999c). Nevertheless, in 

vivo nighttime cAMP-dependent melatonin synthesis and the transcription of its rate-limiting 

enzyme, the arylalkylamine N-acetyltransferase (AANAT), are disinhibited by the absence of 

PER1 (Christ et al. 2010). While the authors attribute this to a liberation of the CRE in the 

AANAT promoter from the inhibitory impact of PER1, our results imply that the molecular 

impact of PER1 is tissue-specific. 
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An intriguing aspect of our data is that the modulatory action of PER1 on signaling to pCREB is 

linked to the nuclear translocation of pP90RSK. Our Co-IP data clearly demonstrate that PER1 

binds pP90RSK at least in the phosphorylated form, and, thus, confirms the interaction of these 

proteins. Thus, pP90RSK may be part of the previously described PER1-protein complex 

(Brown et al. 2005) to facilitate cytoplasmic-nuclear shuttling. A mutation in the gene RPS6KA3, 

coding for the human pP90RSK, is associated with the Coffin-Lowry syndrome, an X-linked 

disorder (Trivier et al. 1996). Markedly, cognitive deficits are among the primary symptoms 

associated with the more than 100 mutations discovered thus far in the RPS6KA3 gene (Merienne 

et al. 1999), which are linked to an affected CREB phosphorylation at serine-133 (Harum et al. 

2001). These observations are in agreement with the memory-relevant molecular deficits 

reported here in signaling to CREB in vivo and in vitro as well as with our previously reported 

behavioral data on working-memory impairment in Per1-/--mice (Rawashdeh et al. 2014).  

 

The ability to convert transient stimuli into long-term changes of brain function is central to the 

capacity of an animal to adapt to, and to learn from, a changing environment. Coping with 

periodically re-occurring harmful or rewarding stimuli requires an efficient molecular time-

management machinery capable to associate, retain, and recall temporal information. Such 

molecular clockworks were originally detected in neurons of the SCN (Reppert & Weaver 2002, 

O'Neill et al. 2008). On the basis of the results presented here and in conjunction with our earlier 

observations (Jilg et al., 2010; Rawashdeh et al., 2014), we propose that within the molecular 

mechanisms in hippocampal memory processing, the clock gene product PER1 is an important 

element for locally disseminating temporal extra-hippocampal cues (Phan et al. 2011, 

Rawashdeh et al. 2007, Rawashdeh & Maronde 2012) by influencing cAMP-signaling and the 
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epigenome (Fig. 7). In accordance with the need for transcription in LTM consolidation, both the 

total gene expression and chromatin modifications are PER1-regulated and, similar to pCREB, 

temporally gated (Rawashdeh et al. 2014).  

 

Unlike the SCN, the hippocampus does not show circadian rhythmicity ex vivo (Abe et al. 2002), 

suggesting that the in vivo rhythms observed in the mouse hippocampus are at best the product of 

a hippocampal slave oscillator. Accordingly, we do not expect an endogenous rhythm in our in 

vitro dissociated PHCs to be rhythmic. Nevertheless, our observations on the differential 

response of the hippocampus to pharmacological stimulation ex vivo in a time-of-day dependent 

manner, strongly suggests that the temporal physiological status of the hippocampus is 

maintained ex vivo. 

 

Normalization of the phosphorylation state of proteins analyzed here, CREB and ERK, against 

actin or any other housekeeping gene product is problematic, if total protein levels are rhythmic 

across a 24h day/night cycle. However, the cycling nature of both CREB and ERK is restricted to 

their phosphorylation state not the total protein levels. In fact, it has been validated previously 

that normalization of pCREB against total CREB protein or actin yields the same results in 

mouse hippocampal protein extracts (Eckel-Mahan et al. 2008). This supports the use of actin or 

any other protein that is not regulated by the circadian system for normalization to detect 

changes in the phosphorylation state of CREB and ERK. 
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In conclusion, our study provides compelling evidence that in mouse hippocampal neurons the 

clock protein PER1 temporally regulate cAMP as well as PKC signaling to CREB. This novel 

role of PER1 is not only evident on the molecular and cellular levels, but is also reflected on the 

systemic level in hippocampus-dependent behavior. Such a prominent and important function of 

PER1 in mnemonic processes may also be linked to phenotypic observations in humans suffering 

from single-nucleotide polymorphisms within the Per1 gene (Harum et al. 2001, Merienne et al. 

1999). Last but not least, this study provides novel mechanistic insights in the PER1-CREB 

connection, showing a bidirectional interaction between both molecules that modulates memory 

relevant signaling pathways in the hippocampus. 
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sample size refers to the number of independent repeats. Representative Western blots are shown 

below all graphs, with lines demarking different membranes. Notably, all pCREB and pERK 

signal intensities were normalized to their corresponding beta-actin signal intensities within the 

same blot.  

 

Figure 4. 

AC/PKA signaling to CREB (Ser133) phosphorylation is intrinsically regulated in hippocampal 

neurons. A, Semi-quantitative analysis of ERK induction in WT-PHC by forskolin (FSK) and its 

complete inhibition by U0126. *P<0.05, t test against baseline. #P<0.05, ANOVA). Error bars 

represent s.e.m.. Representative Western blots are shown below the graph. B, Quantification of 

pERK immunofluorescence signal (right) in NeuN positive primary hippocampal neurons (left) 

of WT and Per1-/--PHC. *P<0.05, t test against baseline; #P<0.05, t test between genotypes. C, 

Western blots analyses of pCREB levels post forskolin (FSK) stimulation of PHC. *P<0.05 

against individual baselines/time point, ANOVA and Holm-Sidak’s multiple comparison test for 

posthoc analysis. Error bars represent s.e.m.. Representative Western blots for the time response 

curves are shown below the figure. D, Representative nuclear pCREB immunofluorescence 

signal in NeuN positive primary hippocampal neurons of WT and Per1-/--PHC (left), and its 

quantification (right). *P<0.05, t test against baseline; #P<0.05, t test between genotypes.  

 

Figure 5. 

PER1 modulates CREB phosphorylation by regulating pP90RSK. A, Time course for forskolin 

(FSK) stimulated shuttling of pP90RSK in WT-primary hippocampal neurons (insets; 

magnification: 63X). Note the inhibition of the nuclear signal by U0126. Quantification is based 
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on the neuronal nuclear immunofluorescence signal. *:P<0.001, ANOVA and Holm-Sidak’s 

multiple comparison for posthoc analysis. #: P<0.001, 2–way ANOVA. B, Time response curves 

for forskolin (FSK) -induced CREB phosphorylation in WT-primary hippocampal neurons in the 

presence and absence of BRD-7389. Quantification is based on the intensity of the nuclear 

immunofluorescence signal after FSK stimulation (*:P<0.001, ANOVA and Holm-Sidak’s 

multiple comparison for posthoc analysis) and in the presence of BRD-7389  (P>0.05, ANOVA). 

#:P<0.001 2–way ANOVA. Inset, representative neuronal nuclear pCREB immunofluorescence 

images (63X). C, Schematic representation of pP90RSK as a downstream target of PKA-

signaling and as a CREB kinase in the FSK-stimulated signaling pathway of primary 

hippocampal neurons. D, Immunochemical analyses of FSK-induced pMSK1 in PHC (n=3) 

prepared from WT-mice. E, Immunochemical assessment for the specificity of the RSK inhibitor 

BRD-7389 on FSK-stimulated pMSK1 in WT-PHC (n=3). Representative Western blots for the 

time response curves are shown below the figures. F, Left, representative primary hippocampal 

neurons prepared from Per1-/--mice and stimulated with FSK in the presence and absence of the 

MEK1/2 inhibitor U0126. Yellow quadrants: representative nuclear pCREB immunofluoresence 

signal (green); red: neuronal marker NeuN; blue: nuclear marker DAPI. Right, corresponding 

quantification of the nuclear pMSK1 immunofluorescence signal (yellow quadrant) in response 

to FSK stimulation (solid line) and in the presence of U0126 (hatched line) (*P<0.05, ANOVA 

and Holm-Sidak’s multiple comparison for posthoc analysis). #P<0.05, 2–way ANOVA. Error 

bars represent s.e.m.. 
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Figure 6. 

PER1 is required for the nuclear translocation of pP90RSK. A, Top, quantification of neuronal 

nuclear pP90RSK immunofluorescence signal after forskolin (FSK) stimulation of primary 

hippocampal neurons from WT- and Per1-/--mice (*P<0.001, ANOVA and Holm-Sidak’s 

multiple comparison for posthoc analysis). Bottom, representative immunofluorescence images 

from neurons of primary hippocampal neurons derived from WT- or Per1-/--mice (red; neuronal 

marker NeuN, green; pP90RSK, blue; DAPI). B, Top, comparison of the activation and 

localization dynamics of nuclear PER1 and pCREB immunofluorescence, following FSK 

stimulation in primary hippocampal neurons of WT-hippocampi (*P<0.05, ANOVA and Holm-

Sidak’s multiple comparison for posthoc analysis). Bottom, immunofluorescence images 

showing the time-dependent nuclear translocation and activation of PER1 (green) and pCREB 

(red) in primary hippocampal neurons, respectively. Note, the co-localization of PER1 and 

pCREB immunofluorescence signal (yellow) in the merged images. C, Co-Immunoprecipitation 

(Co-IP) using the PER1 antibody as bait to determine whether a physical interaction between 

PER1 and phosphorylated P90RSK at S380 (left blot) and at S359/S363 (right blot) exists. 

Western blot of eluates from beads without bound PER1 antibody (lanes 1), and from beads with 

bound PER1 antibody from crude hippocampal lysate (lanes 2), from the eluted fraction (lanes 

3), and washout (lanes 4) using pP90RSK antibodies. M: protein size marker. 

 

Figure 7. 

Working model, based on the here presented results and our earlier observations (Jilg et al., 

2010; Rawashdeh et al., 2014) that delineate how the clockwork component PER1 mediates and 

disseminates temporal information in the hippocampus. The model predicts that rhythmic PER1 
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abundance in mouse hippocampus gates time-of-day-dependent memory performance, by 

temporally regulating memory relevant signaling pathways, essential for LTM formation. 

Mechanistically, the gating of hippocampal signaling by PER1 reflects a temporal regulation of 

the nuclear translocation of pP90RSK, and thus the phosphorylation of its downstream target, the 

transcription factor CREB. Notably, molecular gating of downstream, late signaling events 

within memory relevant pathways, like the earlier shown PER1-dependent chromatin remodeling 

(Rawashdeh et al., 2014)  may explain how the circadian system can differentially influence the 

protein synthesis-dependent LTM without affecting STM. 

 

Table 1 Information on antibodies used for Western blotting and Immunofluorescence analyses 

and the PER1 shRNA sequences. 

Antibody MW 
[kDa] 

Host Source Dilution Use 

PERIOD1  Rabbit Fahrenkrug 
(Fahrenkrug et al. 
2006) 

1 : 500 IF 

β-actin 42 Mouse Sigma -Aldrich 1 : 40.000 WB 
pCREB 43 Rabbit Millipore 1 : 1.000 IF 
pERK1/2 42/44 Rabbit Cell Signaling 1 : 5.000 WB 
pMSK1 90 Rabbit Cell Signaling 1 : 500 WB/IF 
pP90RSK 90 Rabbit Cell Signaling 1 : 1.000 WB/IF 
Anti-rabbit 
Alexa Fluor 488 
conjugate 

 Goat Life Technologies 1 : 500 IF 

Anti-mouse 
Alexa Fluor 568 
conjugate  

 Goat Life Technologies 1 : 500 IF 

Anti- rabbit IgG, 
HRP-linked 

 Goat Cell Signaling 1 : 30.000 WB 

Anti- mouse IgG, 
HRP-linked 

 Goat Santa Cruz 1 : 30.000 WB 
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PER1 shRNA Sequences 
ORIGENE (Tube ID) 

     Species Specificity 

CAGTGTAGCTTCAGCT-

CCACCATCGTCCA 

TG501619A / GI342009 Human, Mouse 

TCCTACCAGCAGATCA-

ACTGCCTGGACAG 
TG501619B / GI342010 Human, Mouse 

TGTCCGTCACCAGTCA-

GTGTAGCTTCAGC 
TG501619C / GI342012 Human, Mouse 

AGGCAGAGAGCGTGGTG-

TCCGTCACCAGT 
TG501619D / GI520261 

Mouse 

 

 

 

Supplementary Figure 1. 

PER1 significantly influences endogenous pCREB levels in mouse hippocampus. 

Immunofluorescence images showing endogenous nuclear pCREB signal (green; Alexa Fluor 

488) in WT and Per1-/--mice hippocampi. Mice were sacrificed at ZT02, thus, when endogenous 

pCREB levels in mouse hippocampus peaks (Rawashdeh et al., 2014). Images of different 

hippocampal regions (single plain) were acquired using a Zeiss Fluorescence microscope (Carl 

Zeiss, Oberkochen, Germany) with a 10X objective lens, and stitched together. 
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Figure 1 
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Figure 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 

Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7  
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