31 research outputs found

    Plant Phenology and Water Relations in a Saline Pan-Dune Mosaic in the Western Mojave Desert

    Get PDF
    An extensive mosaic of small clay pans and low stable dunes exists within Edwards Air Force Base in the western Mojave Desert of California. This pan-dune ecosystem, positioned between the large Rosamond and Rogers dry lakes on the old Pleistocene lakebed of Lake Thompson, provides an opportunity to study the seasonal patterns in growth and flowering phenology and water relations in a saltbush scrub community dominated by a mix of C3 and C4 species. C3 shrubs initiated vegetative growth in February, with current shoot and leaf production largely ceasing in most species by mid-April. The deeply rooted Tetradymia stenolepis and Ericameria nauseosa continued vegetative growth through May. C4 species including Atriplex and the grass Distichilis spicata typically began vegetative growth in mid- to late March, 2–6 weeks later than the first group and continued this growth in most cases through June and July. Reproductive growth commonly did not begin until June and continued into July and/or August. Shrub species showed a general pattern of slowly declining water potentials (increased stress) through the late spring and summer months, reflecting more limited soil water availability. Smaller changes in predawn water potential over this period were seen in the deeply rooted species. Soil moisture availability in the widespread Atriplex confertifolia showed a pattern of variation between pan, dune and open flat microhabtats

    Impact of Ground Water Depletion on the Mesquite Community at Edwards Air Force Base, Western Mojave Desert, California

    Get PDF
    Edwards Air Force Base (EAFB) provides a habitat refugium for mesquite woodlands in the western Mojave Desert of the Antelope Valley. Although many mesquite communities in the arid southwest are considered invasive as they reduce the extent of grazing lands, the community at EAFB is composed primarily of large, widely spaced trees that provide food and shelter for local wildlife species and recreational opportunities for base personnel. Unfortunately, the range of these mesquite trees appears to be contracting as mature and old individuals dominate the community. Although anecdotal evidence suggests that the fall in the local groundwater table is responsible for the decline of the mesquite community at EAFB, no research has been carried out to confirm this. Our results corroborate the hypothesis that the groundwater table at EAFB has declined in the second half of the 20th century and that the area of the mesquite community is diminishing. Although the mesquite community expanded vigorously from 1956 to 1968, it contracted considerably from 1984 to 2000. The evidence for this observed decline is reinforced by the results of the age-class analysis as the community in 2003 is made up largely of mature, old, dying and dead trees. Few saplings (older than 2 years) and no new seedlings (1–2 years) are present in the study sites, suggesting that the mesquite community may not be able to replenish itself

    Plant Functional Groups in Alpine Fellfield Habitats of the White Mountains, California

    Get PDF

    Ecophysiological Observations on Lane Mountain Milkvetch, Astragalus Jaegerianus (Fabaceae), a Proposed Endangered Species of the Mojave Desert

    Get PDF
    Astragalus jaegerianus, the Lane Mountain milkvetch, a perennial herbaceous legume, is a rare and very narrow endemic of the central Mojave Desert in San Bernardino County, California, and currently proposed to be listed as an endangered species. This herb grows in the protection of low shrubs. Anatomical observations revealed that leaflets are amphistomatic and have isolateral mesophyll, typical of full-sun desert leaves, and the green stem is an important photosynthetic organ, having abundant stomata and a cylinder of cortical chlore nchyma. Ecophysiological studies showed that this species requires high PFD (1400-1500 μmol m-2s-1) to achieve maximum photosynthetic rates and, therefore, is probably not utilizing the nurse shrub for shade but, instead, as a trellis for upper shoots to intercept high PFD. A study of δ15N indicated that this legume is a nitrogen fixer, with higher tissue nitrogen content than other associated species (3.1% versus 1.8%). The herb-shrub association is speculated to be mutualistic, in that the shrub may benefit from higher soil nitrogen when it grows with a nitrogen-fixing legume, and A. jaegerianus likely uses the nurse shrub for protection from herbivores

    Community Structure and Demography in a Saline Pan-Dune Mosaic in the Western Mojave Desert

    Get PDF
    A unique saline ecological system formed by an extensive mosaic of small clay pans and low stable dunes exists within Edwards Air Force Base in the western Mojave Desert of California. This ecosystem lies between the large Rosamond and Rogers dry lakes on the old Pleistocene lakebed of Lake Thompson. Plant communities on the low and relatively stable dunes were broadly classed as saltbush scrub, with a total canopy cover of 30–36%. Atriplex confertifolia was the typical dominant, with Ericameria nauseosa as an important associate. Taller dunes of younger age and less saline soils had similar plant cover, but a distinct plant community with Atriplex canescens and Krascheninnikovia lanata as dominants and Yucca brevifolia as a common associate. Flat areas adjacent to the dunes were dominated by a virtual monoculture of Atriplex confertifolia. Aboveground shrub and bunchgrass biomass including dead material varied from 503 to 1204 kg ha−1, low in comparison to similar plant communities in the Great Basin. The absence of small saplings and seedlings of many shrub species suggests successful establishment is highly episodic. Seedlings were abundant only in Isocoma acradenia

    Rarity in Astragalus: a California Perspective

    Get PDF
    Astragalus (Fabaceae), the largest genus of plants in the world with an estimated 3270 species, is known for large numbers of rare endemic species. An inventory of patterns of climatic, topographic, and edaphic diversity of Astragalus taxa in California (98 native species and 144 named taxa) provides a means to understand the occurrence of rarity in relation to climatic equitability and regional species richness of congeneric taxa. Most taxa in the genus have relatively small ranges of distribution, with 50% restricted geographically to a single Jepson Bioregion. The California Native Plant Society lists 51 Astragalus taxa (35% of the native Astragalus taxa) as rare, threatened, or endangered (RTE). Climate characteristics of geographic regions such as rainfall and temperature extremes show no obvious relationship to species richness or the proportion of listed taxa. Species richness is highest in the arid Great Basin (35 species and 53 taxa) combining both its components, followed by 29 species and 39 taxa in the Sierra Nevada East region that includes the White and Inyo Mountains. The Mojave Desert is also high in diversity with 32 species and 39 taxa, but in contrast the Sonoran Desert region is low with only 12 species and 14 taxa. Despite ranking highest in the number of Astragalus taxa present, the Great Basin regions are low in their proportion of RTE taxa (17%) compared to the South Coast Region (39.5%) and Mojave Desert (32%). Strong edaphic specialization is associated with the majority but not all RTE taxa. While no single ecophysiological adaptation can explain this pattern, it is significant that Astragalus taxa have the potential ability to develop symbiotic nitrogen fixation, and this trait is key to success in soils not conducive to growth of many potential competitors. Land use changes, alien grass invasion and grazing, among other threats, are increasing fragmentation of habitats for many rare taxa with consequent impacts on gene flow. The continued survival of rare and locally endemic taxa will require improved knowledge of their individual demographic traits and long-term population dynamics

    Inducing Ni Sensitivity in the Ni Hyperaccumulator Plant Alyssum inflatum Nyárády (Brassicaceae) by Transforming with CAX1, a Vacuolar Membrane Calcium Transporter

    Get PDF
    The importance of calcium in nickel tolerance was studied in the nickel hyperaccumulator plant Alyssum inflatum by gene transformation of CAX1, a vacuolar membrane transporter that reduces cytosolic calcium. CAX1 from Arabidopsis thaliana with a CaMV35S promoter accompanying a kanamycin resistance gene was transferred into A. inflatum using Agrobacterium tumefaciens. Transformed calli were subcultured three times on kanamycin-rich media and transformation was confirmed by PCR using a specific primer for CAX1. At least 10 callus lines were used as a pool of transformed material. Both transformed and untransformed calli were treated with varying concentrations of either calcium (1–15 mM) or nickel (0– 500 lM) to compare their responses to those ions. Increased external calcium generally led to increased callus biomass, however, the increase was greater for untransformed callus. Further, increased external calcium led to increased callus calcium concentrations. Transformed callus was less nickel tolerant than untransformed callus: under increasing nickel concentrations callus relative growth rate was significantly less for transformed callus. Transformed callus also contained significantly less nickel than untransformed callus when exposed to the highest external nickel concentration (200 lM). We suggest that transformation with CAX1 decreased cytosolic calcium and resulted in decreased nickel tolerance. This in turn suggests that, at low cytosolic calcium concentrations, other nickel tolerance mechanisms (e.g., complexation and vacuolar sequestration) are insufficient for nickel tolerance. We propose that high cytosolic calcium is an important mechanism that results in nickel tolerance by nickel hyperaccumulator plants

    Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-Adjusted life-years for 29 cancer groups, 1990 to 2017 : A systematic analysis for the global burden of disease study

    Get PDF
    Importance: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-Adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572000 deaths and 15.2 million DALYs), and stomach cancer (542000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601000 deaths and 17.4 million DALYs), TBL cancer (596000 deaths and 12.6 million DALYs), and colorectal cancer (414000 deaths and 8.3 million DALYs). Conclusions and Relevance: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care. © 2019 American Medical Association. All rights reserved.Peer reviewe

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore