46 research outputs found

    Astrometry with "Carte du Ciel" plates, San Fernando zone. I. Digitization and measurement using a flatbed scanner

    Full text link
    We present an original method of digitizing and astrometrically reducing "Carte du Ciel" plate material using an inexpensive flatbed scanner, to demonstrate that for this material there is an alternative to more specialized measuring machines that are very few in number and thus not readily available. The sample of plates chosen to develop this method are original "Carte du Ciel" plates of the San Fernando zone, photographic material with a mean epoch 1903.6, and a limiting photographic magnitude ~14.5, covering the declination range of -10 < dec < -2. Digitization has been made using a commercial flatbed scanner, demonstrating the internal precision that can be attained with such a device. A variety of post-scan corrections are shown to be necessary. In particular, the large distortion introduced by the non-uniform action of the scanner is modelled using multiple scans of each plate. We also tackle the specific problems associated with the triple-exposure images on some plates and the grid lines present on all. The final measures are reduced to celestial coordinates using the Tycho-2 Catalogue. The internal precision obtained over a single plate, 3microns ~ 0.18" in each axis, is comparable to what is realized with similar plate material using slower, less affordable, and less widely available conventional measuring machines, such as a PDS microdensitometer. The accuracy attained over large multi-plate areas, employing an overlapping plate technique, is estimated at 0.2".Comment: 16 pages, 19 figures and 3 tables. Accepted for publication in A&

    Rab11 and phosphoinositides: A synergy of signal transducers in the control of vesicular trafficking

    Get PDF
    AbstractRab11 and phosphoinositides are signal transducers able to direct the delivery of membrane components to the cell surface. Rab11 is a small GTPase that, by cycling from an active to an inactive state, controls key events of vesicular transport, while phosphoinositides are major determinants of membrane identity, modulating compartmentalized small GTPase function. By sharing common effectors, these two signal transducers synergistically direct vesicular traffic to specific intracellular membranes. This review focuses on the latest advances regarding the mechanisms that ensure the compartmentalized regulation of Rab11 function through its interaction with phosphoinositides

    Automatically Harnessing Sparse Acceleration

    Get PDF
    Sparse linear algebra is central to many scientific programs, yet compilers fail to optimize it well. High-performance libraries are available, but adoption costs are significant. Moreover, libraries tie programs into vendor-specific software and hardware ecosystems, creating non-portable code. In this paper, we develop a new approach based on our specification Language for implementers of Linear Algebra Computations (LiLAC). Rather than requiring the application developer to (re)write every program for a given library, the burden is shifted to a one-off description by the library implementer. The LiLAC-enabled compiler uses this to insert appropriate library routines without source code changes. LiLAC provides automatic data marshaling, maintaining state between calls and minimizing data transfers. Appropriate places for library insertion are detected in compiler intermediate representation, independent of source languages. We evaluated on large-scale scientific applications written in FORTRAN; standard C/C++ and FORTRAN benchmarks; and C++ graph analytics kernels. Across heterogeneous platforms, applications and data sets we show speedups of 1.1×\times to over 10×\times without user intervention.Comment: Accepted to CC 202

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore