574 research outputs found

    Identification of the first homozygous 1‐bp deletion in GDF9 gene leading to primary ovarian insufficiency by using targeted massively parallel sequencing

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141610/1/cge13156_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141610/2/cge13156.pd

    Human Vam6p promotes lysosome clustering and fusion in vivo

    Get PDF
    Regulated fusion of mammalian lysosomes is critical to their ability to acquire both internalized and biosynthetic materials. Here, we report the identification of a novel human protein, hVam6p, that promotes lysosome clustering and fusion in vivo. Although hVam6p exhibits homology to the Saccharomyces cerevisiae vacuolar protein sorting gene product Vam6p/Vps39p, the presence of a citron homology (CNH) domain at the NH2 terminus is unique to the human protein. Overexpression of hVam6p results in massive clustering and fusion of lysosomes and late endosomes into large (2–3 μm) juxtanuclear structures. This effect is reminiscent of that caused by expression of a constitutively activated Rab7. However, hVam6p exerts its effect even in the presence of a dominant-negative Rab7, suggesting that it functions either downstream of, or in parallel to, Rab7. Data from gradient fractionation, two-hybrid, and coimmunoprecipitation analyses suggest that hVam6p is a homooligomer, and that its self-assembly is mediated by a clathrin heavy chain repeat domain in the middle of the protein. Both the CNH and clathrin heavy chain repeat domains are required for induction of lysosome clustering and fusion. This study implicates hVam6p as a mammalian tethering/docking factor characterized with intrinsic ability to promote lysosome fusion in vivo

    The cholesterol ester cycle regulates signalling complexes and synapse damage caused by amyloid-ß

    Get PDF
    Cholesterol is required for the formation and function of some signalling platforms. In synaptosomes, amyloid-β (Aβ) oligomers, the causative agent in Alzheimer's disease, bind to cellular prion proteins (PrPC) resulting in increased cholesterol concentrations, translocation of cytoplasmic phospholipase A2 (cPLA2, also known as PLA2G4A) to lipid rafts, and activation of cPLA2. The formation of Aβ-PrPC complexes is controlled by the cholesterol ester cycle. In this study, Aβ activated cholesterol ester hydrolases, which released cholesterol from stores of cholesterol esters and stabilised Aβ-PrPC complexes, resulting in activated cPLA2. Conversely, cholesterol esterification reduced cholesterol concentrations causing the dispersal of Aβ-PrPC complexes. In cultured neurons, the cholesterol ester cycle regulated Aβ-induced synapse damage; cholesterol ester hydrolase inhibitors protected neurons, while inhibition of cholesterol esterification significantly increased Aβ-induced synapse damage. An understanding of the molecular mechanisms involved in the dispersal of signalling complexes is important as failure to deactivate signalling pathways can lead to pathology. This study demonstrates that esterification of cholesterol is a key factor in the dispersal of Aβ-induced signalling platforms involved in the activation of cPLA2 and synapse degeneration

    Hyaluronidase Hyal1 Increases Tumor Cell Proliferation and Motility through Accelerated Vesicle Trafficking

    Get PDF
    Background: Hyal1 is a turnover enzyme for hyaluronan that accelerates metastatic cancer by increasing cell motility. Results: Hyal1-overexpressing cells have a higher rate of endocytosis that impacts cargo internalization and recycling. Conclusion: The higher rate of vesicle trafficking increases motility receptor function and nutrient uptake. Significance: This novel mechanism implicates Hyal1 trafficking in multiple signaling events during tumor progression

    Assuring the model evolution of protocol software specifications by regression testing process improvement

    Get PDF
    A preliminary version of this paper has been presented at the 10th International Conference on Quality Software (QSIC 2010).Model-based testing helps test engineers automate their testing tasks so that they are more cost-effective. When the model is changed because of the evolution of the specification, it is important to maintain the test suites up to date for regression testing. A complete regeneration of the whole test suite from the new model, although inefficient, is still frequently used in the industry, including Microsoft. To handle specification evolution effectively, we propose a test case reusability analysis technique to identify reusable test cases of the original test suite based on graph analysis. We also develop a test suite augmentation technique to generate new test cases to cover the change-related parts of the new model. The experiment on four large protocol document testing projects shows that our technique can successfully identify a high percentage of reusable test cases and generate low-redundancy new test cases. When compared with a complete regeneration of the whole test suite, our technique significantly reduces regression testing time while maintaining the stability of requirement coverage over the evolution of requirements specifications. Copyright © 2011 John Wiley & Sons, Ltd.link_to_subscribed_fulltex

    Rab11 and phosphoinositides: A synergy of signal transducers in the control of vesicular trafficking

    Get PDF
    AbstractRab11 and phosphoinositides are signal transducers able to direct the delivery of membrane components to the cell surface. Rab11 is a small GTPase that, by cycling from an active to an inactive state, controls key events of vesicular transport, while phosphoinositides are major determinants of membrane identity, modulating compartmentalized small GTPase function. By sharing common effectors, these two signal transducers synergistically direct vesicular traffic to specific intracellular membranes. This review focuses on the latest advances regarding the mechanisms that ensure the compartmentalized regulation of Rab11 function through its interaction with phosphoinositides

    Cooperation of MICAL-L1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis.

    Get PDF
    Endocytic transport necessitates the generation of membrane tubules and their subsequent fission to transport vesicles for sorting of cargo molecules. The endocytic recycling compartment, an array of tubular and vesicular membranes decorated by the Eps15 homology domain protein, EHD1, is responsible for receptor and lipid recycling to the plasma membrane. It has been proposed that EHD dimers bind and bend membranes, thus generating recycling endosome (RE) tubules. However, recent studies show that molecules interacting with CasL-Like1 (MICAL-L1), a second, recently identified RE tubule marker, recruits EHD1 to preexisting tubules. The mechanisms and events supporting the generation of tubular recycling endosomes were unclear. Here, we propose a mechanism for the biogenesis of RE tubules. We demonstrate that MICAL-L1 and the BAR-domain protein syndapin2 bind to phosphatidic acid, which we identify as a novel lipid component of RE. Our studies demonstrate that direct interactions between these two proteins stabilize their association with membranes, allowing for nucleation of tubules by syndapin2. Indeed, the presence of phosphatidic acid in liposomes enhances the ability of syndapin2 to tubulate membranes in vitro. Overall our results highlight a new role for phosphatidic acid in endocytic recycling and provide new insights into the mechanisms by which tubular REs are generated.journal articleresearch support, n.i.h., extramuralresearch support, non-u.s. gov't2013 Jun2013 04 17importe

    Arf family GTP loading is activated by, and generates, positive membrane curvature

    Get PDF
    Small G-proteins belonging to the Arf (ADP-ribosylation factor) family serve as regulatory proteins for numerous cellular processes through GTP-dependent recruitment of effector molecules. In the present study we demonstrate that proteins in this family regulate, and are regulated by, membrane curvature. Arf1 and Arf6 were shown to load GTP in a membrane-curvature-dependent manner and stabilize, or further facilitate, changes in membrane curvature through the insertion of an amphipathic helix
    corecore