146 research outputs found

    Robust Control of Input Limited Smart Structural Systems

    Get PDF
    Integration of controllers with smart structural systems require the controllers to consume less power and to be small in hardware size. These requirements pose as limits on the control input and the order of the controllers. Use of reduced order model of the plant in the controller design can cause spill over problems in the closed-loop system due to possible excitation of the unmodeled dynamics. In this paper, we present a method to design output feedback robust controllers for smart structures in the presence of control input limits considering unmodeled dynamics as additive uncertainty in the design. The performance requirements for the design are specified as regional pole placement constraints on the closed-loop poles. The controller design problem requires the maximization of damping ratio in the presence of additive uncertainty and control input limits. The resulting optimization problem for the controller design is formulated as a generalized eigenvalue problem involving linear matrix inequality (LMI) constraints. The proposed controller is designed and implemented on a multiinput-multioutput 3-mass smart structural test article. The tradeoffs involved in the controller design are analyzed and the performance and robustness specifications are verified experimentall

    Reduced Order Modeling Methods For Turret-gun System

    Get PDF
    Reduced-order modeling techniques are used to design lower order robust controllers for a turret-gun system. The balance-truncation, Routh approximation, and L. Litz\u27s (1980) modal techniques are used to derive the models. A critical comparison of the time and frequency response characteristics of the original and reduced order models is made. The spillover problem associated with a reduced-order model is investigated

    Linear State Variable Dynamic Model And Estimator Design For Allison 1406 Gas Turbine Engine

    Get PDF
    This paper describes a procedure for developing a State Variable Model for the Allison T406 gas turbine engine. This linear model is useful for designing controllers using modern control techniques. The engine and V-22 rotor system is modeled around an operating point by using four state variables and one input variable. For a given power setting, it is observed that two linear models are sufficient to represent the engine dynamics over the entire flight envelope. A relationship between surge margin and the state variables is also developed. It is demonstrated that these linear models are useful in designing an estimator for accommodating hard sensor failures

    Robust Control Of Flexible Structures Using Multiple Shape Memory Alloy Actuators

    Get PDF
    The design and implementation of control strategies for large, flexible smart structures presents challenging problems. To demonstrate the capabilities of shape-memory-alloy actuators, we have designed and fabricated a three-mass test article with multiple shape-memory-alloy (NiTiNOL) actuators. The force and moment actuators were implemented on the structure to examine the effects of control structure interaction and to increase actuation force. These SMA actuators exhibit nonlinear effects due to dead band and saturation. The first step in the modeling process was the experimental determination of the transfer function matrix derived from frequency response data. A minimal state space representation was determined based on this transfer function matrix. Finally in order to reduce the order of the controller, a reduced order state space model was derived from the minimal state space representation. The simplified analytical models are compared with models developed by structural identification techniques based on vibration test data. From the reduced order model, a controller was designed to dampen vibrations in the test bed. To minimize the effects of uncertainties on the closed-loop system performance of smart structures, a LQG/LTR control methodology has been utilized. An initial standard LQG/LTR controller was designed; however, this controller could not achieve the desired performance robustness due to saturation effects. Therefore, a modified LQG/LTR design methodology was implemented to accommodate for the limited control force provided by the actuators. The closed-loop system response of the multiple input-multiple output (MIMO) test article with robustness verification has been experimentally obtained and presented in the paper. The modified LQG/LTR controller demonstrated performance and stability robustness to both sensor noise and parameter variations

    System Modeling and Control of Smart Structures

    Get PDF
    This paper presents multidisciplinary research and curriculum efforts at the University of Missouri-Rolla in the smart structures area. The primary objective of our project is to integrate research results with curriculum development for the benefit of students in electrical, and mechanical and aerospace engineering and engineering mechanics. The approach to the accomplishment of curriculum objectives is the development of a two-course sequence in the smart structures area with an integrated laboratory. The research portion of the project addresses structural identification and robust control methods for smart structures. A brief summary of the research results and a description of curriculum development in the smart structures area are described in this pape

    Organic carbon forms in Alfisol profile after Twenty Years of Cropping, Fertilization, Groundnut Shells and Farm Yard Manure Addition under Arid Conditions

    Get PDF
    The objectives of this study were to examine ;he effects of 20 years of groundnut cropping with chemical fertilization (NPK), organic manuring (FYM or groundnut shells) and integrated use of these two inputs (INM) on crop yields, soil organic carbon (SOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in an Alfisol under arid conditions. VariollS nutrient managcment options significantly «0.05) improved yield of groundnut pod over 20 years. The SOC improved significantly in surface layer (0-20 cm) from 0.31 % in control to 0.59 % in 50 % NPK + 4 t FYM ha". With 50 % NPK + 4 t groundnut shells ha" also the SOC improved markedly to 0.49 %. Interestingly, with integrated nutrient use, improvements in SOC were observed even up to 60 em depth of the profile. Overall, there was a buildup of SOC in surface layers in all treatments. Profile mean POC increased from 0,09 % in control to 0.20 % in 50 % NPK + 4 t FYM ha'!. Microbial biomass carbon (MBC) improved from 31.5-54,9 !-lg g'! soil in control to 39.5 -135,5 !-lg g'! soil with 50 % NPK + 4 t FYM ha", whereas the highest MBC/OC ratio was found in 50 % NPK + 4 t groundnut shells ho"

    Imaging of Nitric Oxide in Nitrergic Neuromuscular Neurotransmission in the Gut

    Get PDF
    Background: Numerous functional studies have shown that nitrergic neurotransmission plays a central role in peristalsis and sphincter relaxation throughout the gut and impaired nitrergic neurotransmission has been implicated in clinical disorders of all parts of the gut. However, the role of nitric oxide (NO) as a neurotransmitter continues to be controversial because: 1) the cellular site of production during neurotransmission is not well established; 2) NO may interacts with other inhibitory neurotransmitter candidates, making it difficult to understand its precise role. Methodology/Principal Findings: Imaging NO can help resolve many of the controversies regarding the role of NO in nitrergic neurotransmission. Imaging of NO and its cellular site of production is now possible. NO forms quantifiable fluorescent compound with diaminofluorescein (DAF) and allows imaging of NO with good specificity and sensitivity in living cells. In this report we describe visualization and regulation of NO and calcium (Ca2+Ca^{2+}) in the myenteric nerve varicosities during neurotransmission using multiphoton microscopy. Our results in mice gastric muscle strips provide visual proof that NO is produced de novo in the nitrergic nerve varicosities upon nonadrenergic noncholinergic (NANC) nerve stimulation. These studies show that NO is a neurotransmitter rather than a mediator. Changes in NO production in response to various pharmacological treatments correlated well with changes in slow inhibitory junction potential of smooth muscles. Conclusions/Significance: Dual imaging and electrophysiologic studies provide visual proof that during nitrergic neurotransmission NO is produced in the nerve terminals. Such studies may help define whether NO production or its signaling pathway is responsible for impaired nitrergic neurotransmission in pathological states

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019 : A systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
    corecore