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Robust Control of Input Limited Smart Structural Systems
Sridhar Sana and Vittal S. Rao

Abstract—Integration of controllers with smart structural sys-
tems require the controllers to consume less power and to be small
in hardware size. These requirements pose as limits on the con-
trol input and the order of the controllers. Use of reduced order
model of the plant in the controller design can cause spill over
problems in the closed-loop system due to possible excitation of
the unmodeled dynamics. In this paper, we present a method to de-
sign output feedback robust controllers for smart structures in the
presence of control input limits considering unmodeled dynamics
as additive uncertainty in the design. The performance require-
ments for the design are specified as regional pole placement con-
straints on the closed-loop poles. The controller design problem re-
quires the maximization of damping ratio in the presence of addi-
tive uncertainty and control input limits. The resulting optimiza-
tion problem for the controller design is formulated as a general-
ized eigenvalue problem involving linear matrix inequality (LMI)
constraints. The proposed controller is designed and implemented
on a multiinput–multioutput 3-mass smart structural test article.
The tradeoffs involved in the controller design are analyzed and
the performance and robustness specifications are verified experi-
mentally.

Index Terms—Actuator limits, linear matrix inequalities, robust
control and regional pole placement, smart structures, spill over.

I. INTRODUCTION

SMART structures research has found many applications in
areas such as aerospace, automotive, and civil engineering

due to the effective integration of sensors, actuators, signal pro-
cessing, and control with structural systems to achieve good per-
formance and adaptability to the environmental changes. There
are several requirements on the controllers used in this integra-
tion such as simplicity of hardware, reduced bandwidth, and less
power consumption. These requirements translate to constraints
on the actuator force and the complexity of the controllers, re-
spectively. Usually, a truncated or reduced order model is used
in the controller design to achieve lower order controllers. But,
the resulting unmodeled dynamics when excited can degrade
the performance or lead to instability of the closed-loop system.
This phenomenon is known commonly asspill-over effectin the
structural control literature [1]. One of the approaches to alle-
viate this problem is to design robust controllers treating the un-
modeled dynamics as uncertainty. Similarly the constraints on
the control input will require tradeoffs in the performance and
robustness that can be achieved by the control systems. This
makes it important to include the control input constraints in
the design phase itself. Also, the performance requirements of
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structural systems are usually specified in terms of the damping
or decay rate requirements on the closed-loop system. These re-
quirements can in turn be specified as regional constraints on
the closed-loop pole locations. All the above dissimilar require-
ments on the controller design show the need for a multiobjec-
tive design procedure for the smart structures. Recently, linear
matrix inequalities (LMIs) have been shown to be able to easily
formulate such multiobjective design problems [2], [8]. Due to
the recent advances in convex optimization like the development
of interior point methods [5], and the availability of user friendly
packages like LMI-toolbox [4] it has been possible to solve these
LMI problems successfully. In this paper, we utilize LMIs to
formulate and solve the controller design problem for the smart
structures. This paper is a continuation of our work presented
at a conference on smart structures [7]. The design procedure is
applied on a 3-mass smart structural test article and the experi-
mental results are included.

II. PROBLEM FORMULATION

A. Uncertainty Representation

In this section, we formulate the uncertainty represen-
tation to be used in the robust controller design for smart
structures to eliminate spill-over problems. The unmodeled
dynamics are formulated as additive unstructured uncertainty
as shown in Fig. 1(a). Here is the nominal plant model
containing the controlled modes of the structural system,

is the linear time invariant (LTI) additive
uncertainty representation in the nominal plant andis a
MIMO (multiinput–multioutput) LTI system chosen to nor-
malize the uncertainty representation and satisfies the following
constraint:

(1)

where is the normalized LTI uncertainty such that

(2)

and is a strictly proper output feedback controller with the
same order as that of the generalized plant. The strictly proper
controller is selected to guarantee the well posedness of the
closed-loop system when the plant model has a nonzero-ma-
trix, which is typical for structural systems. Also, having the
strictly proper controller simplifies the analysis and digital im-
plementation. The state-space realization of the controller is
given below

(3)

The corresponding linear fractional representation (LFR) is
shown in Fig. 1(b). Here, is known as the generalized plant

1063–6536/01$10.00 © 2001 IEEE
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(a) (b)

Fig. 1. (a) Additive uncertainty representation and (b) LFR of the uncertain system.

that includes the plant and the weighting functions and has the
following state-space realization:

(4)

The closed-loop system is given by

(5)

where

and

B. Performance Specifications

In order to define the specifications for the closed-loop
system we define a set of initial conditions for the generalized
plant in terms of a polytope with vertices given by

(6)

For the structural control problems these vertices can be de-
fined to be the modal vectors that excite the individual con-
trolled modes to desired maximum levels in the sensor outputs.
With these vertices, the set consists of all initial conditions
that excite the structure to a sensor voltage not exceeding the
prescribed maximum levels. We define a family of state trajec-
tories of the closed-loop system in (5) in response to all
initial conditions in with the controller initial conditions
kept zero. The specifications for the closed-loop system can now
be stated as follows.

1) Robust stability to the additive uncertainty bounded by
the weighting function .

2) The closed-loop system must have a specified decay rate
and maximum possible damping in all modes.

3) For every trajectory in , the control input satis-
fies

(7)

where is the number of control inputs.

III. CONTROLLER DESIGN

In this section, the multiobjective controller design problem
specified in the previous section will be formulated as an opti-
mization problem involving LMIs.

A. Robust Stability

This specification involves maintaining stability of the
closed-loop system in the presence of the normalized LTI
uncertainty specified by (2). Following the approach in [2], the
Lyapunov function for ensuring the robust stability is given by

where (8)

Now the robust stability problem of the closed-loop system
can be formulated as a LMI feasibility problem in as

such that

(9)

B. Pole Placement Constraints

Using the LMI-regions [3], the condition for placing the
closed-loop poles in a conic region with inner angleand a
decay rate of shown in Fig. 2 can be written as

such that

(10)
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where represents the Kronecker product for matrices and

(11)

C. Control Input Constraints

For defining the control input constraint, we consider an el-
lipsoid given by

(12)

Using the robust stability condition corresponding to the Lya-
punov function in (8), the ellipsoid contains the reachable set

if

(13)

where is the initial condition for the closed-loop system
corresponding to the vertex in with the initial conditions
for the controller being zero and is the number of vertices.

The control input limit constraints can now be written as

(14)

and is the row of corresponding to theth input.

D. Multiobjective Design

With the above matrix inequality formulations of the specifi-
cations, the controller design problem can be stated as follows.

Find
and such that the closed-loop system satisfies the

conditions given in (9), (10), (13), and (14).
But to ensure that all the specifications are satisfied simulta-

neously by an unique controller, it is needed that a single Lya-
punov matrix to satisfy the conditions (9), (10), (13), and (14).
Including this constraint, the controller design problem can be
restated as follows.

Find and such that the closed-loop
system satisfies the conditions given in (9), (10), (13), and (14)
with .

E. Controller Synthesis

The conditions for the controller design given in the previous
section are bilinear in the variables , , and . By using
a parameterization procedure [8], we convert these bilinear ma-
trix inequalities (BLMIs) into LMIs in a different set of vari-
ables. In this parameterization, the matrix variableis parti-
tioned as

and (15)

with and invertible matrices and
satisfying the relationship

(16)

With this parameterization the controller design problem can be
stated as follows.

Fig. 2. LMI region.

Find and
such that the following constraints are satisfied:

(17)

(18)

(19)

(20)

where

(21)

and

and (22)

This problem is still nonconvex because of the presence of in-
verse of the variable in the inequalities. To enable the solution
of the matrix inequalities, is assumed constant. An iterative
search on is carried out until the maximum possible perfor-
mance is obtained. In the following section, the formulation of
the performance optimization problem is given.

F. Performance Optimization

In the specifications, it is desired that the closed-loop
damping be maximized. This corresponds to placing the
closed-loop poles in a conic sector shown in Fig. 2 with
minimum possible inner angle . This can be formulated as a
generalized eigenvalue problem (GEVP) as follows.
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Fig. 3. Three-mass structure (two input–two output system).

Minimize such that

(23)

along with other LMI constrains in (17)–(20).
The parameter is related to the angle by the following

relation:

(24)

The controller parameters and are obtained from
the solution of the optimization problem, using (22) as follows:

(25)

and (26)

where and are obtained by performing a full rank factor-
ization of .

IV. RESULTS

A. System Description

For the experimental verification of the controller design pro-
cedure given in the previous sections, a 3-mass smart structure
test article as shown in Fig. 3 was used. This structure consists of
three blocks connected by two strips of aluminum. This 3-mass
structure is mounted on a steel frame in a pendulum configu-
ration, where the top of the structure is clamped to the frame
and the bottom is left to hang free as shown in Fig. 3. In order
to facilitate control of the vibrations, a pair of collocated actua-
tors and sensors are mounted on the structure. For actuation and
sensing purposes, lead zirconite titanate (PZT) ceramic patches
are used. The locations of the actuators and sensors are chosen
to achieve effective control of the first three modes of vibration.

The control computer consists of the dSpace system, which can
be used forrapid prototypingof real-time digital controllers.
The outputs from the control computer are in the range of5 V
and are amplified by power amplifiers of gain 30 whose outputs
drive the actuators. This translates into a limitation of5 V
at the input of the PZT driver power amplifier. A state-space
model for the MIMO system with two actuators along with the
associated conditioning circuits is obtained using swept sine fre-
quency response measurements. The first three modes of vibra-
tion are found at 1.89, 4.86, and 7.33 Hz with each having a
damping of 0.3%. For the illustration of results in this paper, a
sixth-order state-space model of the structure that includes the
first three modes is utilized.

B. Design Specifications

To obtain the weighting matrix corresponding to the normal-
ized uncertainty representation initially the differences in the
frequency responses of the model and experimental structure
for each input output pairs are obtained. Next, the weighting
function matrix is obtained such that its minimum singular
value is greater than the singular values of the frequency re-
sponse error over all frequencies. The transfer function matrix
for the weighting function is given by

(27)

Fig. 4 shows the comparison of the singular values of the
additive uncertainty, weighting function and the nominal plant
model.

For defining the control input constraints, a set of initial con-
ditions in the form of a polytope whose vertices are the initial
conditions corresponding to the modal vectors that excite the
first three modes of the structural system to a maximum output
of 0.5 V is considered.

The specifications for the control system are defined as fol-
lows.
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Fig. 4. Weighting function.

1) Robust stability in the presence of unmodeled dynamics:
With the weighting function given in (27), the
robust stability requirement implies that the condition,

be satisfied.
2) Pole placement constraints: The objective is to achieve the

maximum possible decay rateand minimum possible
(results in an increase in damping for the closed-loop

poles) in the LMI-region shown in Fig. 2.
3) Control input constraint: For the initial conditions in the

polytope , the control input should never violate the
5 V limits.

C. Design and Analysis of the Controller

The generalized plant for this design is of tenth order with
the nominal plant being of order 6 and the weighting function
being of order 4. Hence a tenth-order controller is designed with
a decay rate of . Several iterations are carried out with
the parameter until the best value is achieved. For a value
of , the best performance was achieved. The resulting
decay rate was which corresponds to a damping of
3.04% in the first mode and the inner angle for the conic sector
achieved was degrees which corresponds to a min-
imum global damping of 1.01%. Fig. 5 shows the comparison
of the open-loop and closed-loop poles. Note that only the poles
near the imaginary axis are shown here.

To analyze the robustness of the control system we need to
verify the small gain condition given by

(28)

The above condition can be tested by an alternate sufficient
condition given by

(29)

or equivalently by

(30)

where and are the maximum and minimum singular
values, respectively. This requirement, though conservative, has
been verified for the present problem as shown in Fig. 6. It can
also be seen that the closed-loop system is actually robust to
a larger set of uncertainties than the specified bound. This is a
direct consequence of conservatism resulting from simultane-
ously satisfying multiple constraints arising from performance,
control input limits and uncertainty.

To demonstrate the limitation on the achievable performance
due to the inclusion of uncertainty in the design, several con-
trollers were designed with maximum possible performance
(damping) while the control input is increased in steps. Fig. 7
shows the plot of the performance against the maximum control
input required. It can be seen that as the allowed control input
increases, the performance increases until a point is reached after
which even an increase in control input will not result in higher
performance. This is due to the limitation on the achievable
performance posed by the uncertainty. This point is well above
the control input available for the present case, confirming the
fact that the performance limitation in the present case is due to
the control input limit. This also suggests that better performance
can be achieved with appropriate choice of actuators.
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Fig. 5. Open-loop and closed-loop pole locations.

Fig. 6. Robustness analysis.

D. Controller Model Reduction

As reported in the previous section, we have designed a tenth-
order output feedback controller for the experimental test ar-
ticle. The order of the controller can pose as a problem where

ever the available hardware is small. In these cases it is required
that we have a reduced order controller. This can be done by
applying model reduction techniques to reduce the order of the
controller. Many times, the properties of the original full-order
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Fig. 7. Performance versus control input limit.

Fig. 8. Comparison of the open-loop and closed-loop frequency responses.

controller may not carry through after the application of model
reduction. Hence, the reduced order controller needs to be ver-
ified for these properties before it is accepted for the applica-
tion. Following this approach, a balanced model reduction was
carried out on the full-order controller and a sixth-order con-
troller that satisfied all the robustness and performance specifi-
cations was found. The comparison of the singular values of the
full-order and the reduced order controllers revealed that they
are indistinguishably identical in the frequency range of interest.

Hence, the reduced order controller is used for all the following
experimental results and analysis.

E. Experimental Results

In order to show the effectiveness of the controller, the mea-
surements of the frequency response of the closed loop system
were carried out. Fig. 8 shows the comparison of the frequency
responses for the open-loop with the closed-loop control system.
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Fig. 9. Controller performance (first mode).

Fig. 10. Robustness verification.

It can be seen that the damping of the modes has been consid-
erably increased. The achieved damping for the first mode is
larger than the global damping because of the use of a decay
rate of in the design.

To show the performance of the control system, the speci-
fied initial conditions are generated by exciting the structure
to a level of 0.5 V in the sensor outputs for the modes con-
sidered in the nominal plant. At steady state, the excitation is
withdrawn and the controller is switched on. The results of the
controller performance for the initial conditions corresponding
to the first mode are shown in Fig. 9. From these results, it can
be concluded that the system has good damping and the control
inputs were always within the specified limits. To test the ro-
bustness features of the control system, a signal corresponding
to an higher order mode in the unmodeled dynamics at fre-
quency 147.2 Hz with an initial condition amplitude of0.1

V is applied in addition to the initial condition excitation of
0.5 V in the first mode. The comparison of the open-loop and

closed-loop responses of the control system is shown in Fig. 10.
From these figures it can be seen that the closed-loop system
performance is unchanged. The control input limits were also
within the specified limits. This test showed that the control
system is robust to unmodeled dynamics and hence is devoid
of spill-over problems.

V. CONCLUSION

An output feedback robust controller design problem is
formulated for smart structural systems with control input limits
to eliminate spill-over problems. The method is tested on an
experimental smart structure and the robustness of the control
system is demonstrated. Because of the inclusion of the control
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input limits and robustness conditions in the design procedure, it
allows one to concentrate on achieving the maximum possible
performance without worrying about violation of any of these
constraints. Conservatism in the design can be reduced by proper
choice of the parameter. Because, this parameter appears
in a nonconvex manner, direct optimization is not possible.
Investigation of conversion of this nonconvex problem into an
equivalent convex problem is currently underway. The order
of the controller resulting from the present procedure is the
sum of the order of the plant dynamics and the order of the
weighting function. A reduced order controller which matches
the full-order controller performance has been implemented
on the test article. In future research, the design procedure will
be extended to develop lower order controllers instead of using
model order reduction.
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