123 research outputs found

    Ground State Bands of the E(5) and X(5) Critical Symmetries Obtained from Davidson Potentials through a Variational Procedure

    Get PDF
    Davidson potentials of the form β2+β04/β2\beta^2 +\beta_0^4/\beta^2, when used in the original Bohr Hamiltonian for γ\gamma-independent potentials bridge the U(5) and O(6) symmetries. Using a variational procedure, we determine for each value of angular momentum LL the value of β0\beta_0 at which the derivative of the energy ratio RL=E(L)/E(2)R_L=E(L)/E(2) with respect to β0\beta_0 has a sharp maximum, the collection of RLR_L values at these points forming a band which practically coincides with the ground state band of the E(5) model, corresponding to the critical point in the shape phase transition from U(5) to O(6). The same potentials, when used in the Bohr Hamiltonian after separating variables as in the X(5) model, bridge the U(5) and SU(3) symmetries, the same variational procedure leading to a band which practically coincides with the ground state band of the X(5) model, corresponding to the critical point of the U(5) to SU(3) shape phase transition. A new derivation of the Holmberg-Lipas formula for nuclear energy spectra is obtained as a by-product.Comment: LaTeX, 12 pages, 4 postscript figure

    The effects of Population III stars and variable IMF on the chemical evolution of the Galaxy

    Full text link
    We studied the effects of a hypothetical initial stellar generation (PopIII) of only massive and very massive stars (VMS) on the chemical evolution of the Galaxy. We adopted the two-infall chemical evolution model of Chiappini et al. and tested several sets of yields for primordial VMS (Pair-Creation SNe), which produce different amounts of heavy elements than lower mass stars. We focused on the evolution of alpha-elements, C, N, Fe. The effects of PopIII stars on the Galactic evolution of these elements is negligible if a few generations of such stars occurred, whereas they produce different results from the standard models if they formed for a longer period. Also the effects of a more strongly variable IMF were discussed, making use of suggestions appeared in the literature to explain the lack of metal-poor stars in the Galactic halo with respect to model predictions. The predicted variations in abundances, SN rates, G-dwarf [Fe/H] distribution are here more dramatic and in contrast with observations; we concluded that a constant or slightly varying IMF is the best solution. Our main conclusion is that if VMS existed they must have formed only for a very short period of time (until the halo gas reached the threshold metallicity for the formation of very massive objects); in this case, their effects on the evolution of the studied elements was negligible also in the earliest phases. We thus cannot prove or disprove the existence of such stars on the basis of the available data. Due to their large metal production and short lives, primordial VMS should have enriched the halo gas beyond the metallicity of the most metal poor stars known in a few Myrs. This constrains the number of Pair-Creation SNe: we find that a number of 2-20 of such SNe occurred in our Galaxy depending on the stellar yields.Comment: 30 pages, 10 figures, accepted for publication in New Astronom

    Heating of the Intergalactic Medium by Primordial Miniquasars

    Get PDF
    A simple analytical model is used to calculate the X-ray heating of the IGM for a range of black hole masses. This process is efficient enough to decouple the spin temperature of the intergalactic medium from the cosmic microwave background (CMB) temperature and produce a differential brightness temperature of the order of 520mK\sim 5-20 \mathrm{mK} out to distances as large as a few co-moving Mpc, depending on the redshift, black hole mass and lifetime. We explore the influence of two types of black holes, those with and without ionising UV radiation. The results of the simple analytical model are compared to those of a full spherically symmetric radiative transfer code. Two simple scenarios are proposed for the formation and evolution of black hole mass density in the Universe. The first considers an intermediate mass black hole that form as an end-product of Population III stars, whereas the second considers super-massive black holes that form directly through the collapse of massive halos with low spin parameter. These scenarios are shown not to violate any of the observational constraints, yet produce enough X-ray photons to decouple the spin-temperature from that of the CMB. This is an important issue for future high redshift 21 cm observations.Comment: Replaced with a revised version to match the MNRAS accepted versio

    A past capture event at Sagittarius A* inferred from the fluorescent X-ray emission of Sagittarius B clouds

    Get PDF
    The fluorescent X-ray emission from neutral iron in the molecular clouds (Sgr B) indicates that the clouds are being irradiated by an external X-ray source. The source is probably associated with the Galactic central black hole (Sgr A*), which triggered a bright outburst one hundred years ago. We suggest that such an outburst could be due to a partial capture of a star by Sgr A*, during which a jet was generated. By constraining the observed flux and the time variability (\sim 10 years) of the Sgr B's fluorescent emission, we find that the shock produced by the interaction of the jet with the dense interstellar medium represents a plausible candidate for the X-ray source emission.Comment: 7 pages, 1 figure, accepted for publication in MNRA

    A New, Efficient Stellar Evolution Code for Calculating Complete Evolutionary Tracks

    Full text link
    We present a new stellar evolution code and a set of results, demonstrating its capability at calculating full evolutionary tracks for a wide range of masses and metallicities. The code is fast and efficient, and is capable of following through all evolutionary phases, without interruption or human intervention. It is meant to be used also in the context of modeling the evolution of dense stellar systems, for performing live calculations for both normal star models and merger-products. The code is based on a fully implicit, adaptive-grid numerical scheme that solves simultaneously for structure, mesh and chemical composition. Full details are given for the treatment of convection, equation of state, opacity, nuclear reactions and mass loss. Results of evolutionary calculations are shown for a solar model that matches the characteristics of the present sun to an accuracy of better than 1%; a 1 Msun model for a wide range of metallicities; a series of models of stellar populations I and II, for the mass range 0.25 to 64 Msun, followed from pre-main-sequence to a cool white dwarf or core collapse. An initial final-mass relationship is derived and compared with previous studies. Finally, we briefly address the evolution of non-canonical configurations, merger-products of low-mass main-sequence parents.Comment: MNRAS, in press; several sections and figures revise

    Analytic descriptions for transitional nuclei near the critical point

    Get PDF
    Exact solutions of the Bohr Hamiltonian with a five-dimensional square well potential, in isolation or coupled to a fermion by the five-dimensional spin-orbit interaction, are considered as examples of a new class of dynamical symmetry or Bose-Fermi dynamical symmetry. The solutions provide baselines for experimental studies of even-even [E(5)] and odd-mass [E(5|4)] nuclei near the critical point of the spherical to deformed gamma-unstable phase transition.Comment: LaTeX (elsart), 53 pages; typographical correction to (3.15

    Pair-Instability Supernovae at the Epoch of Reionization

    Full text link
    Pristine stars with masses between ~140 and 260 M_sun are theoretically predicted to die as pair-instability supernovae. These very massive progenitors could come from Pop III stars in the early universe. We model the light curves and spectra of pair-instability supernovae over a range of masses and envelope structures. At redshifts of reionization z >= 6, we calculate the rates and detectability of pair-instability and core collapse supernovae, and show that with the James Webb Space Telescope, it is possible to determine the contribution of Pop III and Pop II stars toward reionization by constraining the stellar initial mass function at that epoch using these supernovae. We also find the rates of Type Ia supernovae, and show that they are not rare during reionization, and can be used to probe the mass function at 4-8 M_sun. If the budget of ionizing photons was dominated by contributions from top-heavy Pop III stars, we predict that the bright end of the galaxy luminosity function will be contaminated by pair-instability supernovae.Comment: 12 pages, 11 figures. Matches MNRAS accepted versio

    On the Progenitors of Core-Collapse Supernovae

    Full text link
    Theory holds that a star born with an initial mass between about 8 and 140 times the mass of the Sun will end its life through the catastrophic gravitational collapse of its iron core to a neutron star or black hole. This core collapse process is thought to usually be accompanied by the ejection of the star's envelope as a supernova. This established theory is now being tested observationally, with over three dozen core-collapse supernovae having had the properties of their progenitor stars directly measured through the examination of high-resolution images taken prior to the explosion. Here I review what has been learned from these studies and briefly examine the potential impact on stellar evolution theory, the existence of "failed supernovae", and our understanding of the core-collapse explosion mechanism.Comment: 7 Pages, invited review accepted for publication by Astrophysics and Space Science (special HEDLA 2010 issue

    Supernova 2007bi as a pair-instability explosion

    Get PDF
    Stars with initial masses 10 M_{solar} < M_{initial} < 100 M_{solar} fuse progressively heavier elements in their centres, up to inert iron. The core then gravitationally collapses to a neutron star or a black hole, leading to an explosion -- an iron-core-collapse supernova (SN). In contrast, extremely massive stars (M_{initial} > 140 M_{solar}), if such exist, have oxygen cores which exceed M_{core} = 50 M_{solar}. There, high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs prior to oxygen ignition, and leads to a violent contraction that triggers a catastrophic nuclear explosion. Tremendous energies (>~ 10^{52} erg) are released, completely unbinding the star in a pair-instability SN (PISN), with no compact remnant. Transitional objects with 100 M_{solar} < M_{initial} < 140 M_{solar}, which end up as iron-core-collapse supernovae following violent mass ejections, perhaps due to short instances of the pair instability, may have been identified. However, genuine PISNe, perhaps common in the early Universe, have not been observed to date. Here, we present our discovery of SN 2007bi, a luminous, slowly evolving supernova located within a dwarf galaxy (~1% the size of the Milky Way). We measure the exploding core mass to be likely ~100 M_{solar}, in which case theory unambiguously predicts a PISN outcome. We show that >3 M_{solar} of radioactive 56Ni were synthesized, and that our observations are well fit by PISN models. A PISN explosion in the local Universe indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic limit, perhaps resulting from star formation processes similar to those that created the first stars in the Universe.Comment: Accepted version of the paper appearing in Nature, 462, 624 (2009), including all supplementary informatio
    corecore