955 research outputs found

    Acute Oxalate Nephropathy Due to Bilimbi Poisoning: A Case Report

    Get PDF
    Background: The concentrated juice made from Averrhoa bilimbi is rich in oxalic acid. It can cause acute oxalate nephropathy by blocking the tubules with calcium oxalate crystals. Case: An elderly woman was admitted to the hospital with a history of swelling of the legs, facial puffiness, and abdominal distention. Her biochemical study revealed features of acute renal failure. She gave history of taking half liter of bilimbi juice. Renal biopsy confirmed it was a case of acute oxalic nephropathy, which made it the second case of acute oxalic nephropathy due to ingestion of bilimbi juice ever reported from Bangladesh.Conclusion: It is not safe to consume high oxalate-containing fruits in large quantities

    Modeling Power Efficiency of S-boxes Using Machine Learning

    Get PDF
    In the era of lightweight cryptography, designing cryptographically good and power efficient 4x4 S-boxes is a challenging problem. While the optimal cryptographic properties are easy to determine, verifying the power efficiency of an S-box is non-trivial. The conventional approach of determining the power consumption using commercially available CAD-tools is highly time consuming, which becomes formidable while dealing with a large pool of S-boxes. This mandates development of an automation that should quickly characterize the power efficiency from the Boolean function representation of an S-box. In this paper, we present a supervised machine learning assisted automated framework to resolve the problem for 4x4 S-boxes, which turns out to be 14 times faster than traditional approach. The key idea is to extrapolate the knowledge of literal counts, AND-OR-NOT gate counts in SOP form of the underlying Boolean functions to predict the dynamic power efficiency. The experimental results and performance of our novel technique depicts its superiority with high efficiency and low time overhead. We demonstrate effectiveness of our framework by reporting a set of power efficient optimal S-boxes from a large set of S-boxes. We also develop a deterministic model using results obtained from supervised learning to predict the dynamic power of an S-box that can be used in an evolutionary algorithm to generate cryptographically strong and low power S-boxes

    A Design of Digital Microfluidic Biochip along with Structural and Behavioural Features in Triangular Electrode Based Array

    Get PDF
    AbstractDigital microfluidic based biochip manoeuvres on the theory of microfluidic technology, having a broad variety of applications in chemistry, biology, environmental monitoring, military etc. Being concerned about the technological advancement in this domain, we have focused on equilateral triangular electrodes based DMFB systems. Accepting the associated design issues, here, we have addressed many facets of such electrodes regarding their structural and behavioural issues in comparison to the existing square electrodes. As the requisite voltage reduction is a key challenging design issues, to implement all the tasks using triangular electrodes that are possible in square electrode arrays as well, is a tedious job. Furthermore, to deal with this new design deploying triangular electrodes, we have analyzed all the necessary decisive factors including fluidic constraints to ensure safe droplet movements and other modular operations together with mixing and routing. Moreover, an algorithm has been developed to find a route for a given source and destination pair in this newly designed DMFB. Finally, we have included a comparative study between this new design and the existing one while encountering the above mentioned issues

    A STUDY ON WHY IS INDIA INCAPABLE OF PROVIDING THE LIVING WAGE TO ITS CITIZENS?

    Get PDF
    India being the largest democracy in the world with 2nd highest populated countries in the world which includes 28 states and 8 union territories. The constitution of India provides for equal and fair wage for workers employed. So, to find out the fair wage for every employee, a committee was formed and on its recommendation, Minimum Wage Act, 1948 was introduced. According to the Minimum Wage Act, minimum wage includes remuneration+house rent allowance whereas living wage is just a type of wage which fulfills all needs as well as luxurious needs. By the time with the amendments, minimum wage rate was increased and it differs from state to state, hence, there is no single uniform minimum wage rate across the country and the structure has become overly complex. But if we analyze the current scenario, huge unemployment and inflation is defeating the purpose of minimum wage act due to which workers have to accept the employment even on lower wage rate even if it exploits them. Every side of economy such industry, agriculture, IT, etc, skilled or unskilled workers have to accept certain employment coz they are not left with any other option even if they are capable of better jobs

    Detection and extraction of signals from the epoch of reionization using higher-order one-point statistics

    Get PDF
    Detecting redshifted 21-cm emission from neutral hydrogen in the early Universe promises to give direct constraints on the epoch of reionization (EoR). It will, though, be very challenging to extract the cosmological signal (CS) from foregrounds and noise which are orders of magnitude larger. Fortunately, the signal has some characteristics which differentiate it from the foregrounds and noise, and we suggest that using the correct statistics may tease out signatures of reionization. We generate mock data cubes simulating the output of the Low Frequency Array (LOFAR) EoR experiment. These cubes combine realistic models for Galactic and extragalactic foregrounds and the noise with three different simulations of the CS. We fit out the foregrounds, which are smooth in the frequency direction, to produce residual images in each frequency band. We denoise these images and study the skewness of the one-point distribution in the images as a function of frequency. We find that, under sufficiently optimistic assumptions, we can recover the main features of the redshift evolution of the skewness in the 21-cm signal. We argue that some of these features ¿ such as a dip at the onset of reionization, followed by a rise towards its later stages ¿ may be generic, and give us a promising route to a statistical detection of reionization

    Gradient Descent Optimization in Gene Regulatory Pathways

    Get PDF
    BACKGROUND: Gene Regulatory Networks (GRNs) have become a major focus of interest in recent years. Elucidating the architecture and dynamics of large scale gene regulatory networks is an important goal in systems biology. The knowledge of the gene regulatory networks further gives insights about gene regulatory pathways. This information leads to many potential applications in medicine and molecular biology, examples of which are identification of metabolic pathways, complex genetic diseases, drug discovery and toxicology analysis. High-throughput technologies allow studying various aspects of gene regulatory networks on a genome-wide scale and we will discuss recent advances as well as limitations and future challenges for gene network modeling. Novel approaches are needed to both infer the causal genes and generate hypothesis on the underlying regulatory mechanisms. METHODOLOGY: In the present article, we introduce a new method for identifying a set of optimal gene regulatory pathways by using structural equations as a tool for modeling gene regulatory networks. The method, first of all, generates data on reaction flows in a pathway. A set of constraints is formulated incorporating weighting coefficients. Finally the gene regulatory pathways are obtained through optimization of an objective function with respect to these weighting coefficients. The effectiveness of the present method is successfully tested on ten gene regulatory networks existing in the literature. A comparative study with the existing extreme pathway analysis also forms a part of this investigation. The results compare favorably with earlier experimental results. The validated pathways point to a combination of previously documented and novel findings. CONCLUSIONS: We show that our method can correctly identify the causal genes and effectively output experimentally verified pathways. The present method has been successful in deriving the optimal regulatory pathways for all the regulatory networks considered. The biological significance and applicability of the optimal pathways has also been discussed. Finally the usefulness of the present method on genetic engineering is depicted with an example

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).Peer reviewe

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe
    corecore